

SMEC INTERNAL REF. 30034151-RPT-3.7-001

Geotechnical Factual Report

Bundaberg East Levee

Reference No. 30034151-RPT-3.7-001

Prepared for Department of Housing, Local Government, Planning and Public Works 22 May 2024

Document Control

Document	Geotechnical Factual Report
File Location	\\filer.nasuni.local\SMECANZ\Projects\300341\30034151 - Bundaberg\100 Prelim Design\Geotechnical\PD01 Geotech Investigation\09 RPT\02 Factual
Project Name	Bundaberg East Levee
Project Number	30034151-RPT-3.7-001
Revision Number	0

Revision History

Revision No.	Date	Prepared By	Reviewed By	Approved for Issue By
0	22/05/2024	Boung Yoon	Nicholas Alexander	Matt Box

Issue Register

Distribution List	Date Issued	Number of Copies
Department of Housing, Local Government, Planning and Public Works	22/05/2024	1

SMEC Company Details

Approved by	Matt Box		
Address	Level 6, 480 St Pauls Tce, Fortitude	Valley, QLD, 4006, Australia	a
Telephone	+61 478 669 452		
Email	Matt.Box@smec.com	Website	www.smec.com

The information within this document is and shall remain the property of:

Queensland Department of Housing, Local Government, Planning and Public Works

Important Notice

This report is confidential and is provided solely for the purposes of detailing the Geotechnical Investigation Factual Information for the Bundaberg East Levee (BEL) Project. This report is provided pursuant to a Consultancy Agreement between SMEC Australia Pty Limited ("SMEC") and Department of Housing, Local Government, Planning and Public Works, under which SMEC undertook to perform a specific and limited task for the Department of Housing, Local Government, Planning and Public Works. This report is strictly limited to the matters stated in it and subject to the various assumptions, qualifications and limitations in it and does not apply by implication to other matters. SMEC makes no representation that the scope, assumptions, qualifications and exclusions set out in this report will be suitable or sufficient for other purposes nor that the content of the report covers all matters which you may regard as material for your purposes.

This report must be read as a whole. The executive summary is not a substitute for this. Any subsequent report must be read in conjunction with this report.

The report supersedes all previous draft or interim reports, whether written or presented orally, before the date of this report. This report has not and will not be updated for events or transactions occurring after the date of the report or any other matters which might have a material effect on its contents, or which come to light after the date of the report. SMEC is not obliged to inform you of any such event, transaction or matter nor to update the report for anything that occurs, or of which SMEC becomes aware, after the date of this report.

Unless expressly agreed otherwise in writing, SMEC does not accept a duty of care or any other legal responsibility whatsoever in relation to this report, or any related enquiries, advice or other work, nor does SMEC make any representation in connection with this report, to any person other than Department of Housing, Local Government, Planning and Public Works. Any other person who receives a draft or a copy of this report (or any part of it) or discusses it (or any part of it) or any related matter with SMEC, does so on the basis that he or she acknowledges and accepts that he or she may not rely on this report nor on any related information or advice given by SMEC for any purpose whatsoever.

Contents

1	Introd	duction	6
	1.1	Project Background	6
	1.2	Purpose of this Report	7
	1.3	Report Scope and Structure	7
2	Site D	Description	8
3	Geolo	ogy and Topography	10
	3.1	Geology	10
	3.2	Topography	11
4	Geote	echnical Site Investigation	12
	4.1	Scope of the Work	12
	4.2	Method of Investigation	12
	4.3	Health and Safety	12
	4.4	Environmental and Cultural Heritage	
	4.5	Underground Service and Utilities	
	4.6	Traffic Management	
	4.7	Phase 1 - Intrusive Site Investigations	
		4.7.1 Boreholes	13
		4.7.2 Piezocone Penetration Testing (CPTu)	14
	4.8	Phase 2 - Non-Intrusive Site Investigation	15
	4.9	Laboratory Testing	15
5	Geote	echnical Investigation Results	17
	5.1	Subsurface and Groundwater Conditions	17
	5.2	In Situ Testing	18
		5.2.1 Standard Penetration Testing (SPT)	18
		5.2.2 Pore Pressure Dissipation Testing (PPDT)	18
		5.2.3 Vane Shear Testing	18
		5.2.4 Falling Head Percolation Testing	
	5.3	Laboratory Testing	
6		ations and Assumptions	
	6.1	General	
	6.2	Notes Relating to Geotechnical Factual Reports	
	6.3	Unforeseen Conditions	
	6.4	Subsurface Information	
Αp	per	ndices	
Appe	endix A	As built Geotechnical Investigation Plan	23
Appe	endix B	Explanatory Notes and Borehole Logs	24
Appe	endix C	SPT Photographs	25
Appe	endix D	Piezocone Penetration Test	26
Appe	endix E	Pore Pressure Dissipation Test	27
Appe	endix F	Vane Shear Test	28
Appe	endix G	Geophysics Survey	29
Appe	endix H	Laboratory Test Certificates	30

List of Tables

Table 3–1: Published Descriptions of Geological Formations present within the Site Area	10
Table 4–1: As built Borehole Investigation Details	14
Table 4–2: As built CPT Investigation Details	15
Table 4–3: Soil Laboratory Testing Schedule	16
Table 5–1: PPDT results	18
Table 5–2: Vane shear test results	18

1 Introduction

1.1 Project Background

In January 2013 ex-Tropical Cyclone Oswald caused devastating flooding to Bundaberg and surrounding regions. The Burnett River peaked at +9.53m (AHD) at the Targo Street gauge in the Bundaberg CBD. This was a record level for Bundaberg. Significant inundation of commercial and residential property in Bundaberg North, Bundaberg South (including the CBD) and Bundaberg East occurred.

Following the flood event, Bundaberg Regional Council (BRC) and the State Government undertook consultation with the Bundaberg community and independent experts to identify potential works that could provide flood mitigation solutions for the people of Bundaberg, their homes, businesses and the local economy.

In 2019, a Business Case was finalised for the BEL project. This included a levee concept design, founded on flood studies (hydrological and hydraulic), geotechnical investigations, desktop studies and community engagement. The primary aim of the levee is to reduce the impacts of flooding from the Burnett River on Bundaberg East and Bundaberg South.

The Bundaberg East Levee (BEL) design will feature approximately 1.6 kilometres of levee near the Burnett River's southern bank, a flood gate and pump station at the outlets of both Saltwater Creek and the unnamed "Distillery Creek." These floodgates will be closed during regional flood events to prevent backwater flooding from the Burnett River, safeguarding the Bundaberg CBD and East/South Bundaberg areas. This system is designed to protect against a flood event comparable to the 2013 event, with approximately 150mm of freeboard.



Figure 1–1: Locality Plan of Project Site

Planning and Public Works

1.2 **Purpose of this Report**

SMEC Australia Pty Ltd (SMEC) has been commissioned by the Queensland Department of Housing, Local Government Planning and Public Works (DHLGPPW) to undertake the Preliminary design of a flood levee wall, large flood gates and pump stations to protect East Bundaberg from flooding. As part of the Preliminary Design phase, SMEC is required to carry out geotechnical investigation in two phases to collect adequate geological / geotechnical data for the Detailed Design Stage for the geotechnical aspects of the project comprising:

- Phase 1 Intrusive geotechnical site investigation
- Phase 2 Non-intrusive investigation using geophysics

The purpose of this Report is to document details on the geotechnical investigation carried out up to date, including the details of the field work, in situ testing and laboratory testing.

1.3 **Report Scope and Structure**

The scope of geotechnical investigation works covered in this Report includes:

- Synopsis of the overall investigations
- Description of the site conditions, geology and topography
- Summary of fieldwork
- Summary of in situ and laboratory tests undertaken
- Laboratory testing certificates
- Engineering logs of boreholes
- As-built investigation layout plan(s)
- Site photographs
- Photographs of soil samples

Site Description 2

The BEL Project site is located in a commercial, residential and mixed-use area adjacent to the southern bank of the Burnett River in Bundaberg, Queensland. The Bundaberg East Levee will run parallel to the southern bank of the Burnett River and across Saltwater Creek and Distillery Creek. The levee will consist of two segments i.e. the City Levee Alignment and the Distillery Levee Alignment as shown in Figure 2-1.

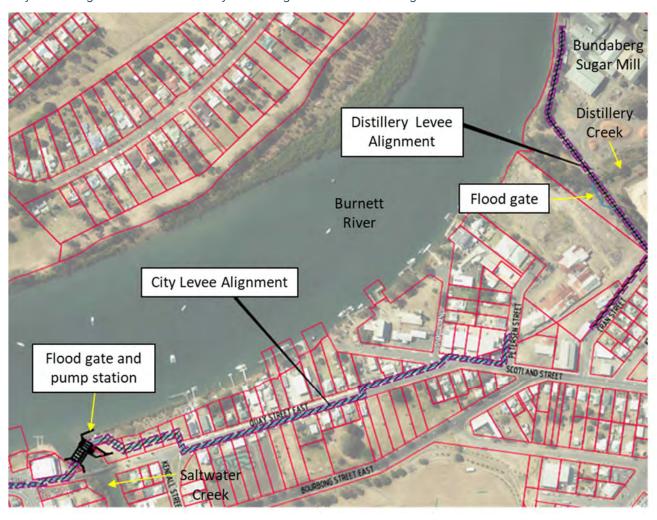


Figure 2-1: Location Plan of Project Site

The City Levee alignment is located in the south-western section of the project site, bounded by Quay Street to the south, pedestrian footpath and crossing over the Saltwater Creek and Scotland Street to the south, Peterson Street to the east, and the Burnett River to the north. Large flood gate and pump station structures will be constructed at the Saltwater Creek crossing and connected to the levee at both sides of the structures i.e. Rowing Club and 1E Quay Street. The City Levee length approximates around 1000m.

The Bundaberg Rowing Club and carpark are situated in the low-lying area near the Saltwater Creek and bounded by the existing block wall (approximately 3m high) and concrete footpath connecting to the 1E Quay Street through the existing pedestrian bridge. The 1E Quay Street area is located in a relatively elevated area and covered by grass. Significant slope instability due to toe scouring of the southern riverbank during a flood event were reported by Bundaberg Regional Council (BRC) in this area. The area from Quay Street to Peterson Street is used for commercial and residential purposes and located generally flat ground with some elevation. Overhead power lines are present along the Quay Street in close proximity to the proposed levee alignment.

Figure 2–2: City Levee Alignment Site

The Distillery Levee alignment is located in the north-eastern section of the site, bounded by Crane Street to the south, crossing over the unnamed creek near the distillery (Distillery Creek) and the Bundaberg Sugar Mill site to the east and the Burnett River to the north. The flood gate will be constructed parallel to the existing bridge at the Distillery Creek crossing and connected to the levee at both side of the structures i.e. northern end of Cran Street and south-west of Bundaberg Sugar Mill site. The Distillery Levee length is approximately 570 m.

Cran Street is connected to the Distillery Creek bridge entering into the Bundaberg Sugar Mill (BSM) site. Various sized boulders and rock blocks were observed in the creek bed with an evidence of scour at the bridge approach embankments. The proposed alignment within the BSM site is generally located in a grassed area until it starts running parallel to the southern bank of the Burnett River.

Figure 2–3: Distillery Levee Alignment Site

3 Geology and Topography

3.1 Geology

The State of Queensland Department of Natural Resources and Mines, GeoResGlobe Version 2.14 (2022) indicates that the project site is situated within areas of Quaternary age alluvial deposits (listed as a mixture of clay, silt, sand and gravel with local coarse cobbles and boulders), and of Eocene - Miocene age sedimentary rocks of the Elliot Formation (sandstone, conglomerate, mudstone, siltstone, and shale).

The Elliot Formation is a significant geological unit in the Bundaberg region and generally experienced periods of deep weathering during Cenozoic Era, resulting in distinct features including reddish-brown colour, mottling, iron-oxide rich patches and a unique duricrust appearance, and zones of increased permeability. The formation typically comprises of a few meters of moderate plasticity clays above a weakly cemented sandstone cap overlying a 20 m to 30 m thick gravelly and clayey sand layer. The top of bedrock is typically encountered at a depth of around 60 m below existing ground surface in the vicinity of Saltwater Creek (based on an advice from a local drilling contractor).

The published surface geology of the project site is shown in Figure 3–1, and the published descriptions of the corresponding geological formations are provided in Table 3–1.

Figure 3–1: Published Geology of the Project Site

Table 3–1: Published Descriptions of Geological Formations present within the Site Area

Label	Unit	Age	Description
Те	Elliot Formation	Eocene - Miocene	Sedimentary Rock - Quartzose to sublabile sandstone, conglomerate, siltstone, mudstone, shale
Qa-QLD	Alluvium	Quaternary	Clay, silt, sand and gravel; flood-plain alluvium

3.2 Topography

The topography of the project site comprises a relatively flat, occasionally undulating terrain with meandering creeks. The ground surface elevation excluding creek channels generally ranges from between approximately 2 m Australian Height Datum (AHD) to 11 m AHD across the site.

Dense vegetation comprising mangroves and marine plants is generally present in low-lying areas located along the Burnett River and the Saltwater Creek. A historical road bridge crossing the Saltwater Creek at Daphne Geddes park is situated between Quay Street and Bourbong Street near Kendall Flat sport ground. Settling ponds are located in the north-eastern side of Cran Street and within the Bundaberg Sugar Ltd site.

The published topography map for the Bundaberg East area is provided in Figure 3–2.

Figure 3-2: Published Topography of the Project Site

4 Geotechnical Site Investigation

4.1 Scope of the Work

The scope of the Geotechnical Site Investigation work to be undertaken at the preliminary design (PD) stage including:

- Phase 1 Intrusive site investigation comprising drilling boreholes to log the soil and rock strata, piezocone penetration testing (CPTu) with pore pressure dissipation and vane shear tests, in-situ permeability
 testing (focusing on existing fill layers), disturbed and undisturbed soil sampling and a suite of laboratory
 tests.
- Phase 2 Non-intrusive site Investigation comprising underwater and land-based seismic refraction survey within the footprint of the flood gate and pump station structures at Saltwater Creek and levee alignments along the Quay Street and Cran Street.

The results of the geotechnical investigation will be used to characterise site specific subsurface conditions and to establish representative ground models with geotechnical design parameters for detailed design for the levee embankment/wall, flood gate and pump station structures.

4.2 Method of Investigation

The standards and specifications adopted in developing the scope for the geotechnical investigation are:

- AS1726 (2017) Geotechnical Site Investigations
- AS1289 Testing of Soils for Engineering Purposes
- Department of Transport and Main Roads (DTMR) Geotechnical Design Standard Minimum Requirements.

4.3 Health and Safety

The investigation was performance under a Health and Safety Management Plan (HSMP) prepared by SMEC. The HSMP helps ensure compliance with applicable legislation, regulation, company policies and procedures. investigation Contractors provided training and competency records for personnel involved in the investigation and evidence of any operational and documented workplace health and safety policies in conformance with the Workplace Health and Safety Act, Regulations and Codes of Practice. Task specific Safe Work Method Statements (SWMS) detailing all site activities and associated hazard identification and mitigation were provided to the DHLGPPW prior to commencement of the investigation.

4.4 Environmental and Cultural Heritage

Geotechnical investigation was carried out with regard to DHLGPPW requirements and relevant state and federal environmental and cultural heritage regulations. Mitigation measures implemented as part of the site investigation involved:

- Assessment of the location and extent of any vegetation clearance requirement during a site walkover
 prior to the commencement of any investigation work. Based on the assessment, no vegetation
 clearance was conducted at proposed investigation locations.
- Reducing the actual ground disturbance footprint at investigation sites as much as practicable.
- Where any environmental or cultural heritage issues, e.g. marine plants, threatened/ endangered plant species, fauna habitat, the existing historical pedestrian bridge etc., were identified, these locations were avoided from the investigation in consultation with a SMEC environmental team on site.

- Actual borehole and CPT locations were relocated outside the influence zone of Environmental and Cultural Heritage during a site walkover.
- · Heavy duty ground protection mats were used to minimise any disturbance if necessary.
- Drilling mud (comprising biodegradable drilling fluid and fine drill cuttings) was disposed of off-site by using an approved method at completion of drilling.
- Health, Safety and Environmental and Cultural Heritage Management Plan relevant to this investigation was submitted to the Client prior to the commencement of any investigation work.

4.5 Underground Service and Utilities

Prior to commencement of the proposed field works, all proposed investigation locations were checked for underground services using a Before You Dig Australia (BYDA) and accredited service locator. Service locating was also undertaken via electronic wand and ground penetrating radar (GPR). The final borehole and CPT locations were set out with a safe distance away from any identified services.

4.6 Traffic Management

Minor traffic control was provided to ensure safety of workers and public during daytime hours for the investigation works. The traffic management plan was subject to change following receipt of the traffic management permit and traffic guidance scheme (TGS) prepared by the traffic management subcontractor depending on the specific requirements of the permit.

4.7 Phase 1 - Intrusive Site Investigations

4.7.1 Boreholes

As part of the Phase 1 investigation, drilling of nine (9) boreholes (designated BH01 to BH06 and BH08 to BH10) was completed under the supervision of a SMEC Geotechnical Engineer from 17 April to 29 April 2024.

The boreholes were advanced using a Comacchio Geo 405 drilling rig using solid flight auger and rotary wash boring techniques in soil material until practical refusal or nominated target depth was achieved. In situ testing comprised standard penetration tests (SPTs) at typical spacing of either 1 m or 1.5 m based the observed material type. Pocket penetrometer readings in cohesive materials were conducted. On completion of drilling, the boreholes were backfilled with a cementitious and bentonite grout mixture to match existing surface levels.

Each SPT sample was inspected, logged and photographed on-site, then placed in a sample bag and correctly labelled for further laboratory testing if required. Relatively undisturbed soil samples were collected using 90mm diameter thin-walled (U90) tubes which were labelled, inspected, logged and immediately sealed on site.

Open standpipes were installed at three (3) borehole locations to monitor variation in groundwater level with time. Falling head percolation testing was also carried out within the surficial fill or natural soil layers to a depth of 2.5m below ground surface at four (4) borehole locations.

All disturbed or undisturbed soil samples were transported to laboratories to carry out soil testing.

The location of each borehole was surveyed by a registered surveyor after completion of investigation works.

All geotechnical investigations were carried out in the full-time presence of a qualified and suitably experienced geotechnical professionals in accordance with the relevant sections of AS1726 – Geotechnical Site Investigation

The borehole investigation locations are detailed in Table 4–1.

Engineering logs of each borehole and explanatory notes are presented in Appendix B, and SPT photographs are shown in Appendix C.

Table 4–1: As built Borehole Investigation Details

		Coord	dinates	Surface	Terminated	Target Structure	
Bore ID	Location	Easting	Northing	Level (m AHD)	Depth (m)		Remark
BH01	Quay Street	435335.68	7250162.02	4.28	20.75	Levee	Relocated due to overhead power lines
BH02	Rowing Club	435018.32	7250106.63	5.03	22.95	Levee and flood gate / pump station	Relocated due to refusal within rock and boulder fills at 1m BGL. Terminated due to refusal at new location
BH03(*)	Quay Street	435577.61	7250229.57	3.79	25.45	Levee	Relocated due to refusal within rock and boulder fills at 1m BGL. Terminated due to hammer bounce at new location
BH04(*)	1E Quay Street	435089.96	7250122.78	7.25	25.10	Levee and flood gate / pump station	Terminated due to hammer bounce
BH05	1E Quay Street	435062.03	7250140.03	6.66	25.10	Levee and flood gate / pump station	Terminated due to hammer bounce
вно6	Intersection between Scotland St and Petersen St	435707.86	7250276.28	8.98	16.95	Levee	-
BH07	Distillery Creek	435855.22	7250566.56	5.70	-	Levee and flood gate	Unable to do service locating
BH08(*)	Distillery Creek	435793.39	7250636.95	5.81	29.95	Levee and flood gate	-
BH09	Sugar Mill site	435797.51	7250732.49	8.15	19.95	Levee	-
BH10	Sugar Mill site	435335.68	7250162.02	4.89	19.95	Levee	-

Notes:

1. BGL: Blow Ground Level

2.

3. (*) Standpipe installation

4.7.2 Piezocone Penetration Testing (CPTu)

Six (6) piezocone penetration tests (CPTu) were carried out at the locations shown in Table 4–1, focusing on the soft soil area identified in available geotechnical information (Concept Engineering Report, 2019). Soil type and engineering characteristics of soft soils such as shear strength, deformation and consolidation characteristics, and permeability will be assessed based on interpretation of CPTu results. The following requirements for CPTu tests were considered:

- CPTu testing to be undertaken with pore water pressure measurement for the full depth.
- Pore Pressure Dissipation testing (PPDT) to be undertaken for a duration adequate for reaching 50% of the initial excess pore water pressure or to a state of equilibrium.

- Pore pressure dissipation test at selected locations.
- In situ vane shear testing to be undertaken at selected locations.

The output of CPTu, PPDT and vane shear testing are presented in Appendix D to Appendix F.

Table 4–2: As built CPT Investigation Details

Borehole	Coordinates		linates	Target	T		
ID	Location	Easting	Northing	Depth (m)	Target Structure	Remark	
CPT01	Rowing Club	435019.19	7250106.66	15.49	Levee and flood gate / pump station	Pore pressure dissipation / vane shear testing	
CPT02	1E Quay Street	435098.92	7250145.12	24.26	Levee and flood gate / pump station	Pore pressure dissipation / vane shear testing	
CPT03	1E Quay Street	435168.12	7250146.11	23.18	Levee	Pore pressure dissipation testing	
CPT04	Quay St	435213.89	7250124.52	29.48	Levee	Relocated due to overhead power lines	
CPT05	Quay St	435335.19	7250159.99	20.22	Levee	Pore pressure dissipation / vane shear testing	
CPT06	Sugar Mill site	435818.04	7250601.51	26.43	Levee	Pore pressure dissipation testing	

Notes:

1. BGL: Below Ground Level

4.8 Phase 2 - Non-Intrusive Site Investigation

Underwater and land-based geophysics survey was performed using seismic refraction method to assess subsurface profile along the proposed alignment under the supervision of a SMEC Geotechnical Engineer from 13 May to 14 May 2024.

Underwater seismic refraction survey was carried out using a vessel connecting source of shock waves and hydrophone array as receivers to calculate seismic velocities and layer depths within the footprint of flood gate structure at Saltwater Creek. Land-based seismic refraction survey was also carried out at both banks of Saltwater Creek, along the Quay Street and Cran Street. An accelerated weight drop was utilised as the seismic energy source to assist the achieve a certain depth of penetration below ground level.

Actual depth of penetration of the investigation will be limited by the signal strength provided by the seismic source, the geometry of the source positions and the geophone array and the geological conditions. The fieldwork was undertaken by engineers or scientists from SMEC subcontractor under the supervision of a SMEC site representative.

Output of geophysics survey will be updated in Appendix F for the next submission.

4.9 Laboratory Testing

Laboratory testing was conducted by a NATA Accredited Laboratory in accordance with applicable Australian or DTMR Standards including:

AS1289 - Methods of Testing Soils for Engineering Purposes

- AS4133 Methods of Testing Rocks for Engineering Purposes
- DTMR Materials Testing Manual, Edition 5, Amendment 6

Soil laboratory testing conducted by Trilab and CMT Laboratory based in Brisbane. The laboratory testing schedule is summarised in Table 4–3.

Table 4–3: Soil Laboratory Testing Schedule

Test Description	Quantity	Test Methods
Particle Size Distribution	18	AS1289 3.6.1 & 3.6.3
Atterberg Limits and Linear Shrinkage	25	AS1289.3.9.1, 3.9.2, 3.2.1, 3.4.1
Moisture Content	22	AS1289.2.1.1, 2.1.2, 2.1.4, 2.1.5, 2.16, 5.8.1
Emerson Class	5	AS1289 3.8.1
Oedometer	5	AS1289.6.6.1
Consolidation Undrained Triaxial Test with pore water pressure measurement	5	AS 1289.6.4.2
Falling or Constant Head Permeability	3	AS1289.6.7.2
Organic Content	5	AS1289.4.1.1
Standard compaction	3	AS1289.5.1.1
California Bearing Ratio with swell measurement (4 days soaked)	3	AS1289.6.1.1
Soil aggressivity Suite (pH, EC, chloride, sulphate, Major Cations/Anions, Total Acidity)	21	AS 1289.4.2.1, 4.3.1, Q130A, Q130B and Q131B

5 Geotechnical Investigation Results

5.1 Subsurface and Groundwater Conditions

The subsurface conditions encountered across the proposed project site generally comprises surficial layers of granular or cohesive fill underlain by alluvial soils, which in-turn, overly the Elliott Formation. This can be summarised as follows:

- <u>Fill</u> was encountered from the ground surface in six (6) boreholes to various depths between 1.6m and 4.5m below ground surface, comprising of silty/clayey sand or sandy/silty clay.
- Alluvial soils were generally encountered at various depths across the project site, comprising loose silty sand, very soft to soft silty clay, sandy clay or clay of dark grey colour. The alluvial soils present in an upwards fining sequence. Some gravels are present adjacent to Saltwater Creek and near the Distillery which are overlain by progressively finer grained materials. Highly compressible marine clay was encountered with thickness ranging from 4 m to 12 m.
- <u>Elliott Formation</u> (inferred residual soils) were encountered below alluvial soils in all boreholes, comprising of medium dense to dense silty/clayey sand with some gravels or stiff to hard sandy/silty clay. The formation was generally encountered at deep depths i.e. > 10 m near the Saltwater Creek and the Distillery Creek. Hard indurated / cemented gravel, sand and clay layers were possibly in localised areas, likely resulting in auger and rock roller bits refusal during drilling holes. Bedrock was not encountered.

Standing water levels were measured with a frequency of twice a day in the standpipe piezometers installed in BH03, BH04 and BH08 during the investigation period. The observed groundwater levels are summarised in Figure 5–1.

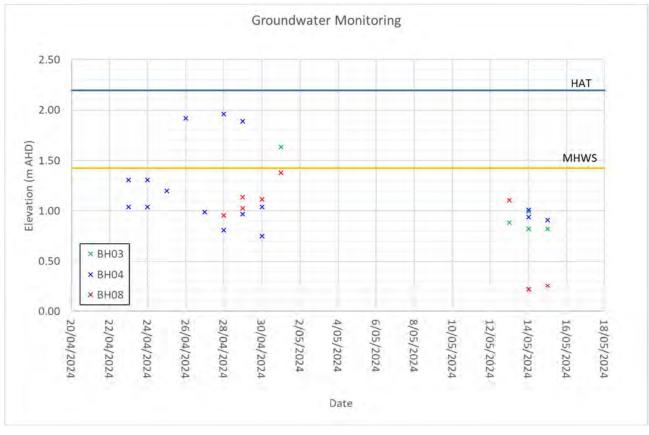


Figure 5–1: Groundwater Level Variation

In Situ Testing 5.2

5.2.1 **Standard Penetration Testing (SPT)**

Standard Penetration Tests (SPT) were carried out during the drilling of each of the boreholes. Retrieved SPT samples were logged and photographed by experienced geotechnical personnel. SPT results are presented on the boreholes logs in Appendix B along with photographs in Appendix C.

Pore Pressure Dissipation Testing (PPDT)

Pore pressure dissipation testing (PPDT) was carried out in fine grained materials to estimate field permeability of soft clays during the investigation of CPT01, CPT02, CPT03, CPT05 and CPT06. Output of PPDT is presented in Appendix E.

Table 5-1: PPDT results

Test ID	Depth (m)	Material Type	Origin	Peak Pore Pressure (kPa)	Final Pore Pressure (kPa)	Time for 50% dissipation (min)
CPT01	6.5	CLAY	Alluvium	286.5	141.6	83.1
	10.5	CLAY	Alluvium	468.5	129.2	128.8
CPT02	8.5	CLAY	Alluvium	303.8	154.3	45
	14	CLAY	Alluvium	521.7	300.6	185.6
	19.4	Silty CLAY / Sandy SILT	Elliot Formation	1231.5	140.0	0.89
CPT03	7	CLAY	Alluvium	209.4	110.1	145
	15	CLAY	Alluvium	504.9	154.3	149.8
	17.49	Silty CLAY / Silty SAND	Elliot Formation	623.8	127.6	0.87
CPT05	9.2	CLAY	Alluvium	251	99.7	369.3
CPT06	9.5	Silty CLAY	Elliot Formation	271.7	96.1	6.22

5.2.3 **Vane Shear Testing**

Vane shear testing was carried out by direct-push methods to measure the shear strength of soft soils at locations of CPT01, CPT02 and CPT05. Output of vane shear testing are presented in Appendix F.

Table 5-2: Vane shear test results

Test ID	Depth (m)	Material Type	Origin	Peak Shear Stress (kPa)	Residual Shear Stress (kPa)
CPT01	3.5	Sandy CLAY	Fill	48.7	29.3
	5.0	CLAY	Alluvium	46.5	20.6
	7.0	CLAY	Alluvium	46.4	24.9
	9.0	CLAY	Alluvium	37.4	14.4
	11.0	CLAY	Alluvium	49.7	23.2

Test ID	Depth (m)	Material Type	Origin	Peak Shear Stress (kPa)	Residual Shear Stress (kPa)
	12.0	CLAY	Alluvium	59.4	29.3
CPT02	5.0	Silty CLAY	Alluvium	77.9	39.2
	7.0	CLAY	Alluvium	67.5	27.0
	8.5	CLAY	Alluvium	49.5	26.5
	11.2	CLAY	Alluvium	47.9	21.4
	13.0	CLAY	Alluvium	71.1	32.5
	14.5	CLAY	Alluvium	56.0	21.6
CPT05	4.5	CLAY	Alluvium	44.0	22.5
	6.0	CLAY	Alluvium	41.2	19.2
	7.5	CLAY	Alluvium	47.8	15.5
	10.0	CLAY	Alluvium	73.5	28.6
	11.0	CLAY	Alluvium	50.9	20.1

5.2.4 Falling Head Percolation Testing

Field falling head percolation testing was carried out in four of the levee alignment boreholes i.e. BH01, BH04, BH05 and BH09. Auger drilling was firstly undertaken to a depth of 1.5m - 2.5m below ground surface and then the drilled hole was fully filled with water. Variation of water head level with time was measured by using a dip meter. The test results are used to estimate a field saturated hydraulic permeability of near surface fill or natural materials using an empirical correlation proposed by Reynolds et al (2015). Results of the testing are presented in Figure 5–2.

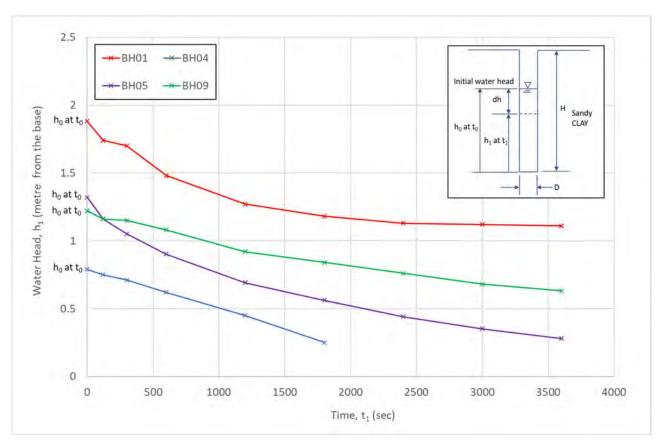


Figure 5–2: Falling Head Percolation Test Results

5.3 Laboratory Testing

A suite of soil laboratory testing was carried out for soil classification and characteristics of strength and consolidation of soft soils. Aggressivity testing was also conducted to assess the aggressiveness of the soils/water to concrete and steel for durability design. Results of laboratory testing are summarised in the following table.

Laboratory testing certificates will be updated in Appendix G for the next submission.

6 Limitations and Assumptions

6.1 General

The contents of the report are for the sole use of the Department of Housing, Local Government, Planning and Public Works. No responsibility or liability will be accepted to any third party. Data or opinions contained within the report may not be used in other contexts or for any other purposes without prior review and agreement with SMEC.

The recommendations in this report are based on data collected at specific locations using suitable investigation techniques. Only a certain amount of information has been collated to meet the specific financial and technical requirements and this report does not purport to completely describe all the site characteristics and properties. The nature and continuity of the ground between test locations has been inferred using experience and judgement and it must be appreciated that actual conditions could vary from any extrapolated models.

The contractor or client can make their own interpretation of the provided factual data. They should perform any additional tests as necessary for their own purpose. Subsurface conditions, such as groundwater levels, can change over time and this should be borne in mind, particularly if the findings and/or recommendations contained within this report are used after a protracted delay.

It is strongly recommended that any plans and specifications prepared by others and relating to the contents of this report, or any amendments to the original plans and specifications, are reviewed by SMEC to verify that the intent of any recommendations are properly reflected in the design. During construction, we request the opportunity to review our interpretations if the encountered site conditions are significantly different from those inferred in this report. If the report is reproduced, it must be in full. Should there be any queries concerning this report please do not hesitate to contact SMEC.

6.2 Notes Relating to Geotechnical Factual Reports

This geotechnical factual report is prepared by qualified personnel on the information supplied or obtained and are based on current engineering standards of interpretation and assessments.

Information may be gained from limited subsurface testing, surface observations, and previous work, and is supplemented by knowledge of the local geology and experience of the range of properties that may be exhibited by the materials present. For this reason, geotechnical reports should be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely on.

Where the report has been prepared for a specific purpose (e.g. design of a three-storey building), the information and interpretation may not be appropriate if the design is changed (e.g. a twenty-storey building). In such areas, the report and the sufficiency of the existing work should be reviewed by SMEC in the light of the new proposal.

Every care is taken with the report content; however, it is not always possible to anticipate or assume responsibility for the following conditions:

- Unexpected variation in ground conditions. The potential for this depends on the amount of investigative work undertaken.
- Changes in policy or interpretation by statutory authorities.
- The actions of contractors responding to commercial pressures.

If these occur, SMEC would be pleased to resolve the matter through further investigation, analysis or advice.

6.3 Unforeseen Conditions

Should conditions encountered on site differ markedly from those anticipated from the information contained in this report, SMEC should be notified immediately. Early identification of the anomalies generally results in any

problems being more readily resolved and allows re-interpretation and assessment of the implications for future work.

6.4 Subsurface Information

Logs of a borehole, recovered core, test pit, excavated face, or cone penetration tests are an engineering and/or geological interpretation of the subsurface conditions. The reliability of the logged information depends on the drilling/testing method, sampling/observation spacing's and the ground conditions. It is not always possible or economic to obtain continuous high-quality data. It should also be recognised that the volume of material observed or tested is only a fraction of the total subsurface profile.

Interpretation of subsurface information and application to design and construction must take into consideration the spacing of the test locations, the frequency of observations and testing, and the possibility that geological boundaries may vary between observation points.

Groundwater observations and measurements outside of specially designed and constructed piezometers should be treated with care for the following reasons:

- In low permeability soils, groundwater may not seep into an excavation or bore in the short time it is left open.
- A localised perched water table may not represent the true water table.
- Groundwater levels vary according to rainfall events or season.
- Some drilling and testing procedures mask or prevent groundwater inflow.
- The installation of piezometers and long-term monitoring of groundwater levels may be required to adequately identify groundwater conditions.

Appendix A As built Geotechnical Investigation Plan

Filepath: C:\Project_working\1047746 Bundaberg East Levee DD\12 Geotechnical Investigation\09 QGIS\BEL.qgz

50 m

Filepath: C:\Project_working\1047746 Bundaberg East Levee DD\12 Geotechnical Investigation\09 QGIS\BEL.qgz

Legends

- Boreholes (CDM, 2018)
- Boreholes (Core, 2019)
- Boreholes (SMEC, 2024)
- Cone Penetration Tests (SMEC, 2024)
- Geophysics Survey (SMEC, 2024)

50 100 m

PAGE SIZE A3

FIGURE TITLE GI Plan

PROJECT TITLE Bundaberge East Levee

(BEL)

PROJECT NO.

DRAWING NO. 1

DATE 17-05-2024

CREATED BY B'

SOURCES QLD GLOBE

Member of the Surbana Jurong Group

SMEC AUSTRALIA PTY LTD ABN 47 065 475 149

© SMEC Australia Pty Ltd 2022. All Rights Reserved

Disclaimer: While all reasonable care has been taken to ensure the information contained on this map is up to date and accurate, this map contains data from a number of sources - no warranty is given that the information contained on this is free from error or omission. Any reliance placed on such information shall be at the sole risk of the user. Please verify the accuracy of all information prior to using it. This map is not a design document.

Filepath: C:\Project_working\1047746 Bundaberg East Levee DD\12 Geotechnical Investigation\09 QGIS\BEL.qgz

 $File path: C: \ Project_working \ 1047746 \ Bundaberg \ East \ Levee \ DD \ 12 \ Geotechnical \ Investigation \ 109 \ QGIS \ BEL. \ qgz$

Appendix B Explanatory Notes and Borehole Logs

Explanatory Notes of Abbreviations and Terms

Used on Borehole and Excavation Logs

General

Information obtained from site investigations is recorded on log sheets. The "Engineering Log - Borehole or Non Cored Borehole" presents data from drilling operations where a core barrel has not been used to recover material, and information is based on a combination of regular sampling and in-situ testing. The material penetrated in non-core drilling is commonly soil but may include rock. The "Engineering Log - Cored Borehole" presents data from drilling operations where a core barrel has been used to recover material - commonly rock. The "Engineering Log - Excavation" presents data obtained on the subsurface profile from observations of excavations, either natural or man-made. It may contain a scaled, graphical presentation of the typical excavation profile. Refusal of the excavation plant is noted should it occur.

As far as is practicable, the data contained on the log sheets is factual. Some interpretation is inevitable in the assessment of material boundaries in areas of partial sampling, the location of areas of core loss, description and classification of material, estimation of strength and identification of drilling induced fractures. Material description and classification is generally based on AS1726-2017.

Drilling Method

Code	Description	
ADT	Auger drilling with TC-bit	
ADV	Auger drilling V-bit	
AS	Auger screwing	
AT	Air track	
CA	Casing advancer	
CC	Concrete core	
CTR	Cable tool rig	
DB	Wash bore drag bit	
НА	Hand auger	
HAND	Hand methods	
HF	Hollow flight auger	
HMLC	Diamond core 62mm diameter	
HQ	Wire line core barrel 64mm diameter	
HQ3	Wire line core barrel 62mm diameter	
NDD	Non destructive drilling	
NMLC	Diamond core 52mm diameter	
NQ	Wire line core barrel 47mm diameter	
NQ3	Wire line core barrel 45mm diameter	
PT	Continuous push tube	
PQ	Wire line core barrel 85mm diameter	
RAB	Rotary air blast	
RC	Reverse circulation	
RD	Rotary blade or drag bit	
RR	Rock roller	
RT	Rotary tricone bit	
SD	Sonic drilling	
TBX	Tube-X	
VC	Vibro-core drilling	
WB	Wash bore drilling	
	-	

Drilling Penetration

Ease of penetration in non-core drilling

VE	Very easy	
E	Easy	
F	Firm	
Н	Hard	
VH	Very hard	

Support and Casing

Code	Description	Code	Description
С	Casing	Hw	114.3 mm
М	Mud	NW	88.9 mm
W	Water	PVC	150 mm

Core Run

Core lifts are identified by a line and depth with core loss per run as a percentage. Core loss is shown in the core run unless otherwise indicated.

Defect Spacing

The average distance between defects is measured parallel to the core axis in mm and may be expressed as a range or average.

Angle / Orientation

Angle from horizontal and orientation to magnetic north.

For inclined cored boreholes the Alpha and Beta angles are presented for orientated core. Alpha (α) is measured relative to the core axis, whilst Beta (β) is measured clockwise from the reference line looking down the core axis in the direction of drilling.

Excavation Method

N	Natural exposure		
X	Existing excavation		
ВВ	Tractor mounted backhoe bucket		
EX	Hydraulic excavator		
EH	Hydraulic excavator with hammer		
В	Bulldozer blade		
R	Ripper		

Water / Drilling Fluid

The drilling fluid used is identified and loss of return to the surface is estimated as a percentage, generally of each core lift.

Symbol	Description
—	Water inflow
—	Water outflow
	Water level: during drilling or immediately after completion of drilling
	Groundwater level with date observed prior to introduction of fluids or after standpipe construction
Not observed	The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole / test pit.
Not encountered	The borehole / test pit was dry soon after excavation, however groundwater could be present in less permeable strata. Inflow may have been observed had the borehole / test pit been left open for a longer period.

Colour

The colour of a soil or rock is described in a moist/wet condition using simple terms, such as black, white, grey, red, brown, orange, yellow green or blue. These are modified as necessary by 'pale', 'dark' or 'mottled'. Borderline colours are described as a combination of these colours (e.g. orange-brown). Where a soil or rock consists of a primary colour with a secondary mottling it is described as (primary colour) mottled (first colour) and (secondary colour).

Description of Soil

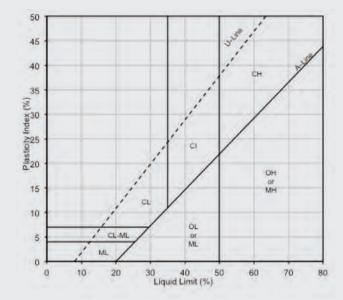
- Soil name (BLOCK LETTERS)
- ii. Plasticity or particle size of soil
- Colour iii.
- Secondary soil components names & estimated proportions, iv. including their plasticity / particle characteristics, colour
- Minor soil components name, estimated proportions, including their plasticity / particle characteristics, colour
- Other minor soil components
- Moisture condition vii.
- viii. Consistency / density
- Structure of soil, geological origin
- Additional observations

Particle Size

Term		Grain Size	
Clay		< 2 µm	
Silt		2 – 75 μm	
	Fine	0.075 – 0.21 mm	
Sand	Medium	0.21 – 0.6 mm	
	Coarse	0.6 – 2.36 mm	
	Fine	2.36 – 6.7 mm	
Gravel	Medium	6.7 – 19 mm	
	Coarse	19 – 63 mm	
Cobbles		63 – 200 mm	
Boulders		> 200 mm	

Fine Grained and Coarse Grained Soils

Term	Description		
Fine Grained Soil (cohesive)	More than 35% of the material less than 63 mm is smaller than 0.075 mm (silts and clays)		
Coarse Grained Soil	More than 65% of the material less than 63 mm is larger than 0.075 mm (sands, gravels and cobbles)		


Descriptive Terms for Secondary and Minor Components

	In coarse grained soils				In fine grained soils	
Designation of Components	% Fines	Terminology	% Accessory coarse fraction	Terminology	% Sand / Gravel	Terminology
	≤5	trace	≤15	trace	≤15	trace
Minor	>5, ≤12	with	>15, ≤30	with	>15, ≤30	with
Secondary	>12	prefix	>30	prefix	>30	prefix

Plasticity – Fine Grained Soils

Liquid Limit (LL) %	Description	
≤ 35	Low plasticity (L)	
>35 to ≤ 50	Medium plasticity (I)	
> 50	High plasticity (H)	

Plasticity Chart-Fine Grained Soils

Consistency Terms – Fine Grained Soils

Term	Undrained shear strength (kPa)	Indicative SPT (N) Blow Count	Field Guide to Consistency
Very Soft (VS)	<12	0 – 2	Easily penetrated several centimetres by fist, exudes between fingers when squeezed in fist
Soft (S)	12 – 25	2 – 4	Easily penetrated several centimetres by thumb, easily moulded by light finger pressure
Firm (F)	25 – 50	4 – 8	Can be penetrated several centimetres by thumb with moderate effort, and moulded between the fingers by strong pressure
Stiff (St)	50 – 100	8 – 15 Readily indented by thumb but penetrated only with difficultly. C moulded by fingers	
Very Stiff (VSt)	100 – 200	15 –30	Readily indented by thumb nail, still very tough
Hard (H)	>200	>30	Indented with difficulty by thumb nail, brittle
Friable (Fr)	-		Can be easily crumbled or broken into small pieces

Density Terms – Coarse Grained Soils

Term	Density Index (%)	SPT (N) Blow Count	
Very Loose (VL)	< 15	0 – 4	
Loose (L)	15 – 35	4 – 10	
Medium Dense (MD)	35 – 65	10 – 30	
Dense (D)	65 – 85	30 – 50	
Very Dense (VD)	> 85	>50	

Particle Characteristics - Coarse Grained Soils

Term	Description
Well Graded	Having good representation of all particle sizes
Poorly graded	With one or more intermediate size poorly represented
Gap graded	With one or more intermediate sizes absent
Uniform	Essentially of one size

Angularity - Coarse Grained Soils

	Rounded
	Sub-rounded
00	Angular
O D	Sub-angular

Origin of Soil

Formed by humans
Formed by wind
Formed by streams and rivers
Formed on slopes (talus)
Formed in marine environments
Formed in lakes
Formed by weathering insitu

Soil Moisture

	Term	Code	Description
p	Dry	D	Looks and feels dry and free running
Coarse Grained	Moist	М	Soil feels cool, darkened in colour, soils tend to stick together, soil grains do not run freely through fingers and no visible free water
Cos	Wet	W	Soil feels cool, darkened in colour, soils tend to stick together, free water on remoulding
ned	Moist, Less than Plastic Limit	W < PL	Hard and friable or powdery, moisture content well below Plastic Limit
	Moist, Near Plastic Limit	W ≈ PL	Soil feels cool, darkened in colour, can be moulded, near Plastic Limit
Fine Grained	Moist, Wet of Plastic Limit	W > PL	Soil feels cool, dark, usually weakened, free water, moisture content well above Plastic Limit
	Wet, Near Liquid Limit	W ≈ LL	Soil exudes easily
	Wet, Wet of Liquid Limit	W > LL	Soil behaves as a liquid

Boundary Classifications

Soils possessing characteristics of two groups are designated by combinations of group symbols. For example, GW-GC, well graded gravel-sand mixture with clay binder.

Graphic Symbols

	Asphalt	1,1,1,1,1	МН
	СН	33	ML
1//	CI	<u>#</u> 3 6 46	ОН
	CL	2주 작주 : 작문 작	OL
##	Concrete	10 50 10 50 10 50	PT
***	Fill	<i>%</i>	SC
28	GC	%	SM
3900 8900	GM	33	SP
000	GP	F-13	SW
000	GW		

Soil Classification

Soils are described in general accordance with AS1726-2017 as shown below.

		N PROCEDU than 63 mm ar	RES nd basing fractions on es	timated mass)		GROUP SYMBOL	PRIMARY NAME
0.075	tion is	CLEAN GRAVELS	Wide range in grain size and substantial amounts of all intermediate particle sizes, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		GW	GRAVEL	
is larger tha	9/	GRAVELS More than half of coarse fraction is larger than 2.36 mm	(Little or no fines)		ize or a range of sizes with zes missing, not enough fines s, no dry	GP	GRAVEL
ım and	aked ey	S n half of n 2.36 r	GRAVELS w/ FINES	'Dirty' materials with none to medium dry	excess of non-plastic fines, strength; ≥ 12% silty fines	GM	SILTY GRAVE
than 63 m	ole to the n	GRAVEL More thar larger tha	(Appreciable amount of fines)	'Dirty' materials with excess of plastic fines, medium to high dry strength; ≥ 12% clayey fines		GC	CLAYEY GRAVEL
erial is less	stinguishak	action is	CLEAN SANDS	Wide range in grain size and substantial amounts of all intermediate particle sizes, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		SW	SAND
the material less than More than 65% of the material is less than 63 mm and is larger than 0.075 mm A particle size of 0.075 is about the smallest size distinguishable to the naked eye	SANDS More than half of coarse fraction is smaller than 2.36 mm	(Little or no fines)	Predominantly one size or a range of sizes with more intermediate sizes missing, not enough fines to bind coarse grains, no dry strength; ≤ 5% fines		SP	SAND	
	san half than 2:	SANDS w/ FINES (Appreciable	'Dirty' materials with excess of non-plastic fines, none to medium dry strength; ≥ 12% silty fines		SM	SILTY SAND	
COAR More th	COARSE More than mm about the	SANDS More tha smaller t	amount of fines)		excess of plastic fines, strength; ≥ 12% clayey fines	SC	CLAYEY SANI
an)75 is	IDENTIFIC	ATION PROCEDURE	S ON FRACTIONS <	0.075 mm		
less th	ze of 0.0	V	DRY STRENGTH	DILATANCY	TOUGHNESS	GROUP SYMBOL	PRIMARY NAME
terial	le si	init, in the last of the last	None to low	Slow to rapid	Low	ML	SILT
FINE GRAINED SOILS More than 35% of the material less than 63 mm is less than 0.075 mm A particle size of 0.077	SILTS AND CLAYS Liquid Limit < 50%	Medium to high	≥ 12% clayey fines	Medium	CL, CI	CLAY	
		Low to medium	Slow	Low	OL	ORGANIC SIL	
	SILTS AND CLAYS Liquid Limit > 50%	Low to medium	None to slow	Low to medium	MH	SILT	
		High to very high	None	High	CH	CLAY	
		Medium to high	None to very slow	Low to medium	ОН	ORGANIC CLAY	
HIGHLY OF	RGANIC SO	ILS: readily ide	entified by colour, odou	ır, spongy feel and fred	uently fibrous texture	PT	PEAT

Description of Rock

- Rock name (BLOCK LETTERS)
- ii. Grain size and mineralogy
- iii. Colour
- Fabric and texture iv.
- Features, inclusions, minor components, moisture content and durability
- Strength
- vii. Weathering and/or alteration
- viii. Rock mass properties discontinuities and structure of rock
- Interpreted stratigraphic unit
- Additional observations including geological structure

Simple rock names are used to provide a reasonable engineering description, rather than a precise geological classification. The rock name is chosen by considering the nature and shape of the grains or crystals, the texture and fabric of the rock material, the geological structure and setting, and information from the geological map of the area. Further guidance on the naming of rocks can be found in AS1726-2017, Tables 15, 16, 17 and 18. Typical rock types are described below, though subject to site specific variations.

Rock Type	Description	Example of Rock Name
Sedimentary	Formed by deposited beds of sediments, have grains that are cemented together and often rounded. Significant porosity	COMMON: Conglomerate, Breccia, Sandstone, Mudstone, Siltstone, Claystone ≥90% CARBONATE: Limestone, Dolomite, Calcirudite, Calcarenite, Calcisiltite, Calcilutite PYROCLASTIC: Agglomerate, Volcanic Breccia, Tuff
Igneous	Formed from molten rock and have a crystalline texture. Typically massive and low porosity. Rock types are from coarse to fine grained.	HIGH QUARTZ CONTENT: Granite, Microgranite, Rhyolite MODERATE QUARTZ CONTENT: Diorite, Microdiorite, Andesite LOW QUARTZ CONTENT: Gabbro, Dolerite, Basalt
Metamorphic	Formed when rocks are subject to heat and/or pressure and have typically have directional fabric. Typically have low porosity and crystalline structure. Rock types are from coarse to fine grained	FOLIATED: Gneiss, Schist, Phyllite, Slate NON-FOLIATED: Marble, Quartzite, Serpentinite, Hornfels
Duricrust	Formed as part of a weathering profile and show evidence of being cemented in situ. Cementation is typically irregular and exhibits replacement textures.	Ferricrete (Iron oxides and hydroxides) Silicrete (Silica) Calcrete (Calcium carbonate) Gypcrete (Gypsum)

Note: () denotes dominant cementing mineralogy

Terms describing dominate grain size in sedimentary rocks.

Term	Grain size
Coarse	Mainly 0.6 mm to 2 mm
Medium	Mainly 0.2 mm to 0.6 mm
Fine	Mainly 0.06mm (just visible) to 0.2 mm

Terms describing dominate grain size in igneous and metamorphic rocks

	ı
Term	Grain size
Coarse	Mainly greater than 2 mm
Medium	0.06 mm to 2 mm
Fine	Mainly less than 0.06 mm (just visible) to 0.2mm

Texture and Fabric Sedimentary rocks

Thickness	Bedding Term
< 6 mm	Thinly laminated
6 – 20 mm	Laminated
20 – 60 mm	Very thinly bedded
60 – 200 mm	Thinly bedded
0.2 – 0.6 m	Medium bedding
0.6 – 2 m	Thickly bedded
> 2 m	Very thickly bedded

Igneous rocks

Term	Definition
Amorphous	Indicates that the rock has no obvious crystalline structure
Crystalline	A regular molecular structure, showing crystal structure and symmetry.
Cryptocrystalline	The texture comprises crystals that are too small to recognise under an ordinary microscope. Indistinctly crystalline.
Porphyritic	Indicates the presence of phenocrysts (relatively large crystals in a fine grained ground mass) in igneous rocks.
Flow banded	Indicates visible flow lines in volcanic rocks and some intrusive rocks
Glassy	Entirely glass like. No crystalline units and without crystalline structure.
Vesicular	A texture of volcanic rocks that indicates the presence of vesicles (small gas bubbles). Where the vesicles are filled with a mineral substance they are termed Amygdales and the texture is Amygdaloidal.

Metamorphic

Term	Definition
Foliation	The parallel arrangement of minerals due to metamorphic process, which shall be defined by the terms in weak, moderate and strongly foliated.
Porphyroblastic	A texture indicating the presence of porphyroblasts (larger crystals formed by recrystallization during metamorphism, such as garnet or staurolite in a mica schist).
Cleavage	A type of foliation developed in fine grained metamorphic rocks such as slates.

Bedding and Fabric Development

Туре	Definition		
Massive	No obvious development of bedding – rock appears homogeneous		
Poorly Developed	Bedding is barely obvious as faint mineralogical layering or grain size banding, but bedding planes are poorly defined.		
Well Developed	Bedding is apparent in outcrops or drill core as distinct layers or lines marked by mineralogical or grain size layering.		
Very Well Developed	Bedding is often marked by a distinct colour banding as well as by mineralogical or grain size layering.		
Indistinct fabric	There is little effect on strength properties		
Distinct Fabric	The rock may break more easily parallel to the fabric		

Rock Strength

Term (Code)	UCS (MPa)	Is ₍₅₀₎ (MPa)	Field Guide to Strength
Very Low (VL)	0.6 – 2	> 0.03 to ≤0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low (L)	2 - 6	Easily scored with a knife; indentation 1 mm to 3 mm show in the specime with firm blow of the pick point; has dull sound under hammer. A piece core 150 mm long 50 mm in diamet may be broken by hand. Sharp edge of core may be friable and break during handling.	
Medium (M)	6 - 20	> 0.3 to ≤ 1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm in diameter can be broken by hand with difficulty.
High (H)	20 - 60	> 1 to ≤ 3	A piece of core 150 mm long by 50 mm in diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High (VH)	60 -200	> 3 to ≤ 10 Hand specimen breaks with pick aft more than one blow; rock rings under hammer.	
Extremely High (EH)	>200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Rock strength is assessed by laboratory Uniaxial Compressive Strength (UCS) testing and/or Point Load Strength Index (PLT) testing to obtain the Is₍₅₀₎ the strength table implies a 20 times correlation between Is₍₅₀₎ and UCS used for classification. Note however, multiplier may range from 4 (e.g. some carbonated and low strength rocks) to 40 (e.g. some igneous rocks and/or some high strength rocks). A site specific correlation based on testing, previous investigation or literature may be used where available. These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considered weaker due to the effect of rock defects.

Visual Log

A diagrammatic plot of defects showing type, spacing and orientation in relation to the core axis.

	Defects open in situ or clay sealed
	Defects closed in-situ
•••••	Drill induced fractures or handling breaks
	Infilled seam

Rock Weathering and or Alteration Classification

Term (Code)		Definition	
Residual soil (RS)		Soil developed on extremely weathered rock. The rock mass structure and substance fabric are no longer evident but the soil has not been significantly transported.	
Extremely wear (EW) Extremely alter		Rock is weathered to s that it has 'soil' proper disintegrates or can be but the texture of origin	ties, i.e, it either e remoulded in water,
(HA) w (C	visitinctly veathered DW)* visitinctly ultered DA)	Whole rock material is discoloured usually by extent that iron staining or bleaching and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decreased compared to the fresh rock usually as a result of iron leaching or deposition. The colour and strength of the original rock substance is no longer recognisable Whole rock material is discoloured usually by staining	*Where is it not practical to distinguish between 'HW' and MW'. Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores
Moderately Altered (MA)		that original colour of the fresh rock is no longer recognisable	
Slightly weathe	` ′	Rock is slightly discold or no change of streng	
Fresh rock (F)		Rock shows no sign of staining.	f decomposition or

Rock Core Recovery

TCR = Total Core Recovery (%)

Length of Core Recovered x 100 Length of Core run

SCR = Solid Core Recovery (%)

Sum Length of Cylindrical Core Recovered x 100

Length of Core run

RQD = Rock Quality Designation (%)

Sum Length of Sound Core Pieces > 100mm in length

Length of Core run

x 100

Types of Discontinuities

Term	Code	Description		
Parting	Pt	A defect parallel or sub-parallel to a layered arrangement of mineral grains or micro-fractures, which has caused planar anisotropy in the rock substance.		
Joint	Jt	A defect across which the rock substance has little tensile strength, but that is not related to textural or depositional features within the rock substance.		
Sheared Zone	SZ	A zone with roughly parallel planar boundaries of rock substance consisting of closely spaced joints with smooth slickensided surfaces often curved. The joints divide the rock mass into unit blocks usually of lenticular or wedge shape.		
Crushed Zone	CZ	A zone or seam with roughly parallel planar boundaries of rock substance composed of disoriented, usually angular, fragments of the host rock substance		
Seam	Se	A zone or seam with roughly parallel boundaries, infilled by soil (IS) or decomposed rock (DS)		
Fault	F	A fracture (defect) in rock along which there has been an observable amount of displacement.		
Vein	Ve	A zone of minerals intruded into a joint or fissures.		

Type of Structures

Term	Code	Description		
Bedding	Bg	A layered arrangement of minerals parallel to the surface of deposition which has caused planar anisotropy in the rock substance.		
Cleavage	С	An alignment of fine grained minerals caused by deformation.		
Schistosity	SH	A layered arrangement of minerals to each other		
Foliation	Fo	A planar alignment of minerals caused by deformation.		
Void	Vo	A completely empty space		
Dyke	DK	Sheet-like bodies of igneous rock that cut across sedimentary bedding or foliations in rocks. They may be single or multiple in nature		
Sill	SI	A sill is an intrusion of magma that spreads underground between the layers of another kind of rock		
Contact	Cn	A contact between intrusive and stratigraphic units.		
Boundary	Bd	A distinct boundary between two stratigraphic units		

Note: Drill breaks (DB) and handling breaks (HB) are not included as natural discontinuity.

Discontinuity Spacing

Spacing (mm)	Description	
>6000	Extremely Widely Spaced	
2000 - 6000	Very Widely Spaced	
600 - 2000	Widely Spaced	
200 - 600	Medium Spaced	
60 - 200	Closely Spaced	
20 - 60	Very Closely Spaced	
<20	Extremely Closely Spaced	

Discontinuity Planarity

Code	Description		
Cu	Curved – A defect with a gradual change in orientation		
lr	Irregular – A defect with many sharp changes in orientation		
Pl	Planar – Defect forms a continuous plane without variation in orientation		
St	Stepped – A defect with distinct sharp steps or step		
Un	Undulose – A defect with undulations		
Vu	Vuggy – An open void with crystallisation		
Wv	Wavy - A wavy defect surface		

Discontinuity Roughness

Abbreviation	Description			
Ro	Rough – Many small surface irregularities generally related to the grain size of the parent rock			
Sm	Smooth – Few or no surface irregularities related to the grain size of the parent rock			
Po	Polished – Planes have a distinct sheen or a smoothness			
SI	Slickensided – Planes have a polished, grooved or striated surface consistent with differential movement of the parent rocs along the plane			
VR	Very rough – many large surface irregularities, amplitude generally more than 1mm			

Infill Material

Code	Name	Code	Name
Ca	Calcite	Gp	Gypsum
Ch	Chlorite	Mn	Manganese
Cl	Clay	MS	Secondary mineral
Со	Coal	Ру	Pyrite
Fe	Limonite / Ironstone	Um	Unidentified mineral
Fe CI	Iron oxide clay	Qz	Quartz
FI	Feldspar	Х	Carbonaceous

Discontinuity Observation

Term	Code	Description	
Clean	CN	No visible coating or infill	
Stain	SN	No visible coating or infill but surfaces are discoloured by mineral staining	
Veneer <1 mm	VNR	A visible coating or soil or mineral substance but usually unable to be measured. If discontinuous over the plane, patchy veneer.	
Coating >1 mm to <10 mm	СТ	A visible coating or infilling of soil or mineral substance. Describe composition and thickness.	
Filling (Filled) >10 mm	FLD	A visible filling of soil or mineral substance. Describe composition and thickness.	

Samples and Field Tests

Code	Description
В	Bulk disturbed sample
BLK	Block sample
С	Core sample
DS	Small disturbed sample
ES	Soil sample for environmental testing
EW	Water sample for environmental testing
FP	Pressuremeter
G	Gas sample
Н	Hydraulic fracturing
HP	Hand penetrometer test
I	Impression device
Is ₍₅₀₎	Point Load Index
K	Permeability
LB	Large bulk disturbed sample
N	Standard penetration test result (N* denotes SPT sample recovery)
0	Core orientation
Р	Piston sample
PID	Photoionisation detector reading in ppm
R	Hammer bouncing / refusal
SPT	Standard Penetration Test
U	Undisturbed push in sample
UCS	Uniaxial Compressive Strength
U50	Undisturbed tube sample (50 mm diameter)
U75	Undisturbed tube sample (75 mm diameter)
VS	Vane shear test
• (A)	Axial Test
O (D)	Diametral Test
	Irregular Lump test

Laboratory Tests

Code	Description
ACM	Asbestos Containing Material
CD	Consolidated Drained
CU	Consolidated Undrained
LL	Liquid Limit
LS	Linear Shrinkage
MC	Moisture Content
MDD	Maximum Dry Density
OMC	Optimum Moisture Content
PBT	Plate Bearing Test
PI	Plasticity Index
PL	Plastic Limit
PSD	Particle Size Distribution
$ ho_{ t b}$	Bulk Density
$ ho_{\scriptscriptstyle p}$	Particle Density
$ ho_{\scriptscriptstyle d}$	Dry Density
UU	Undrained Unconsolidated

Backfill / Standpipe Detail

Symbol	Description	Symbol	Description
	Cement seal		Filter pack: sand filter
	Grout backfill	ν · ν · ν · ν · ν · · · · · · · · · · ·	Filter pack: gravel filter
	Blank pipe		Bentonite seal
	Slotted pipe	1888	Cutting – excavated material backfill
	Surface Completion: Monument Above Ground		Surface Completion: Gatic Ground Monument

Completion Details

Туре	Description
Collapse	Exploratory hole collapsed before reaching planned depth
Equipment Failure	Boring or excavator equipment operational failure
Flooding	Flooding of excavation
Machine Limit	Limit of machine capability reached
Obstruction	Obstruction preventing further advancement
Possible services	Indication of possible services below
Services present	Services encountered during exploratory hole
Squeezing	Hole squeezing boring equipment
Target Depth	Depth reached as planned
Target Depth Instrumentation Installed	Depth reached as planned instrumentation installed
Target Depth Standpipe Installed	Depth reached as planned open standpipe constructed
Material Refusal	Material preventing further advancement

Q

Project Bundaberg East Levee
Client Department of Housing QLD Client Departmer Site Bundaberg Job No 30034151 Bundaberg

East North Elevation 4.28 m Datum

435335.7 m 7250162.0 m MGA2020-56/AHD

Start Date 21/4/2024 End Date 21/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth North

Inclination -90° Survey

		Water turn)	3) RQI			Testing		7 👨	(n ر وo.	apo				JCy		Б	ingth	Member of the Surbar Borehole Identifier:	
Method	Casing	rogress Loss/Rei	Run (TCR) RQE	Sampling	SPT (Recovered length)	DCP	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	Vater Le	Depth (m) <i>Elevation</i> Graphic Log	USCS Code	Depth <i>RL</i>	Soil / Rock Material Description	/loisture >ondition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Geology Unit, Other Testing & General Observations	Installation
A	<u> </u>			0)	(Recovered length)	DCF	PID (ppili)	> ∞	0.0		4.28	FILL Sandy CLAY: medium to high plasticity, brown to dark brown, sand is fine to medium grained; trace rootlets.	w <pl< th=""><th></th><th>_</th><th></th><th>T</th><th>FILL</th><th>Installation</th></pl<>		_		T	FILL	Installation
-					0.50m SPT 3.6,7 N=13 (0.45m REC) 0.95m		0.60m PP=320kPa 0.70m PP=300kPa		1.0		1.20								1.0—
AD/T	- PW				1.50m SPT 1,2,4 N=6 (0.45m REC) 1.95m		1.80m PP=150kPa 1.90m PP=150kPa		2.0—	СН	3.08	Sandy CLAY: high plasticity, dark brown and grey, sand is fine to medium grained; trace fine grained gravel, trace rootlets. 2.30: Becoming brown, dark brown and black	w≈PL	St				ALLUVIAL SOIL	2.0—
- -	V				2.50m SPT 2.2.7 N=9 (0.45m REC) 2.95m		2.70m PP=150kPa 2.80m PP=150kPa		3.0 —		3.20 1.08	CLAY: high plasticity, orange-brown and grey, trace fine grained sand.	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td>3.0 —</td></pl<>						3.0 —
- - - -					3.50m SPT 2,3,7 N=10 (0.45m REC) 3.95m		3.70m PP=230kPa 3.80m PP=230kPa		4.0 —	СН									4.0—
					4.50m SPT HW/450mm (0.45m REC)		4.50m VS=43kPa 4.70m PP=80kPa 4.80m PP=80kPa		5.0		4.50 -0.22	CLAY; low to medium plasticity, dark grey to grey.		F				MARINE SOIL	5.0—
- - - - -					5.50m SPT HW/450mm (0.45m REC)		5.70m PP=60kPa 6.00m VS=41kPa		6.0	CL -CI									6.0 —
-							7.50m VS=47kPa		7.0										7.0 —

Client Departmer Site Bundaberg Job No 30034151

Project Bundaberg East Levee Department of Housing QLD Bundaberg

East North Elevation 4.28 m MGA2020-56/AHD Datum

435335.7 m 7250162.0 m

Start Date 21/4/2024 End Date 21/4/2024 Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

Inclination -90° North Survey

				Job No 30034151				Da	um	MGA2020-56/AHD			- 2	urve	y			
	Casing Progress Water	(Loss/Return) Run (TCR) RQD			-											_	Member of the Surba	
	Na.	Ε Ω Β			Testing		7 -	G o	ge				Consistency Density		б	Rock Strength	Borehole Identifier:	
₽,	g SS Ref	ξ Έ	Sampling			PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	, e ×	Depth (m) Elevation Graphic Log	USCS Code			e ie	ster 3	Alteration	Weathering	Stre	Origin, Goology Unit	BH01
Method	sing ogre	n (T	ш Га	SPT		VS (kPa)	마를 다.	epth eva aph	SS	and the		ng fi	nsis nsit	erat	ath	쑹	Origin, Geology Unit, Other Testing &	
Method	2 F	<u> </u>	Sal	(Recovered length)	DCP	PID (ppm)	¹ / ₁₀ ≈ ∞	Q III P	SO	pth RL Soil / Rock Material Description	:	ဠိပိ	ပိမိ	¥	×	&	General Observations	Installation
								3.7		CLAY: low to medium plasticity, dark grey to grey. (continued)		w <pl< td=""><td>St</td><td></td><td></td><td></td><td>MARINE SOIL</td><td></td></pl<>	St				MARINE SOIL	
									1									1 7
				8.50m SPT					1									1 1
				HW/450mm (0.45m REC)		9.70m			1									1 7
				(0.45III REC)		8.70m PP=110kPa 8.80m PP=110kPa			1									1 1
						PP=110kPa		9.0	1									9.0
									1									1 1
									CL									1 1
									-CI									1 1
				10.00m					1									1 1
				SPT		10.00m VS=73kPa		10.0	1									10.0
				HW/450mm (0.45m REC)					1									1 1
						10.30m PP=110kPa 10.40m PP=100kPa		#/	1									1 1
						PP=100kPa			1									1 1
									1									1 1
						11.00m VS=51kPa		11.0	,	.20								11.0
						VO-SINI a				992 Sandy CLAY: low to medium plasticity, dark grey to dark brown, sand is fine t coarse grained.	0		S to F					1 1
				11.50m SPT					1	coarse grained.								1 7
				HW/450mm (0.45m REC)		11.60m PP=40kPa			1.									1 1
				(0.45III REC)		PP=40kPa 11.70m PP=60kPa			CL -Cl									1
- ₩ -								12.0										12.0 —
																		1 7
										2.50 CLAY: low to medium plasticity, dark grey, with fine to coarse grained sand.								1 7
									1	CLAY, low to medium plasticity, dark grey, with line to coarse grained sand.								1
ГП				13.00m				13.0	CL -CI									13.0
				SPT 5.7.2 N=9				-8.7	1 13	3.20								13.0
ГП				5,7,2 N=9 (0.45m REC) 13.45m					8	Gravelly SAND: fine to medium grained, grey to pale grey, gravel is fine to me grained, sub-angular to sub-rounded; trace low plasticity clay.	edium	W	L				ELLIOT FORMATION	1 1
ГП				10.10.11]]:::		grained, sub-angular to sub-rounded, trace low plasticity day.								1
ГП]::::										1
] _{14.0}]	SP									14.0 —
								14.0	.									14.0
								<u> </u> :										
				14.50m SPT						0.22 Clavey SAND: fine to coarse grained, dark grey, clav is low plasticity; with fire								
				3,5,5 N=10 (0.45m REC)					1	2.22 Clayey SAND: fine to coarse grained, dark grey, clay is low plasticity; with fir medium grained, sub-angular to sub-rounded gravel.								
				14.95m				15.0										15.0 —
								-10.7	1									15.0
									SC									
								\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1								15.51: Losing water	
								\\ \!//										
				16.00m					1									

Geological & Project Client Site Job No Sundaberg East Levee Department of Housing QLD Bundaberg 30034151

East North Elevation 4.28 m Datum MGA2020-56/AHD

435335.7 m Start Date 21/4/2024 7250162.0 m End Date 21/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

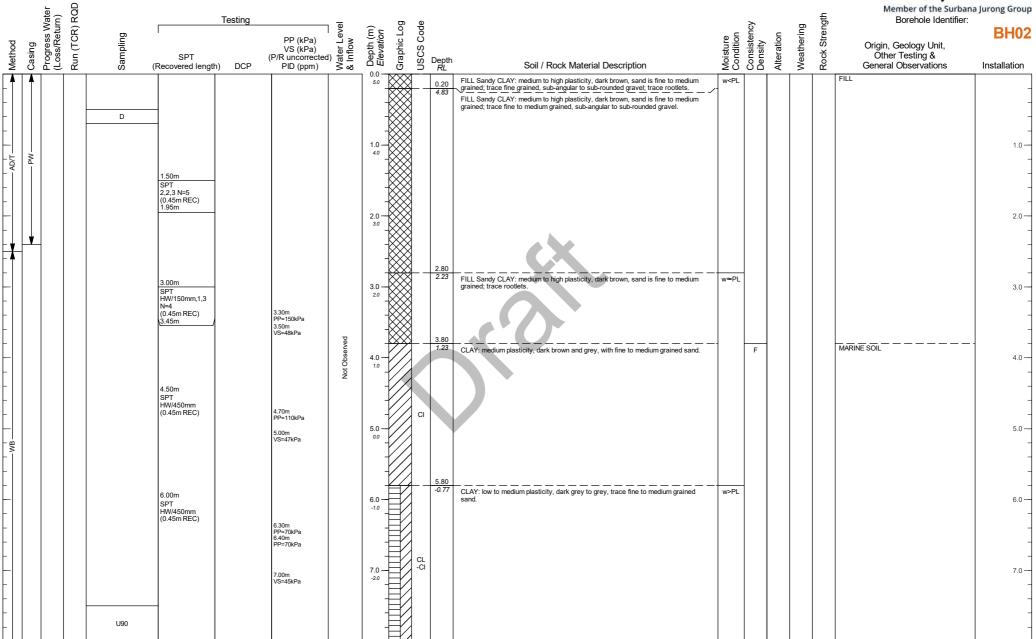
					Job No 30034151	1				Datum	ı ıvı	3A2020-56/AHD			Surve	ey .			
		Progress Water (Loss/Return)	Run (TCR) RQD			Testing		_		70	15			_			£	Member of the Surban Borehole Identifier:	a Jurong Group
70	_	ss W Retur	CR)	ing		<u> </u>	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	Leve L	Depth (m) Elevation	Graphic Log			o e	Consistency Density		Weathering	Rock Strength	Orderin Openham Hait	BH01
Method	Casing	rogre .oss/l	L) un	Sampling	SPT (Parametri)	DOD	VS (kPa) (P/R uncorrected	/ater Inflo	Depth Eleva	iraphi	n n Deptl D <i>RL</i>	Soil / Rock Material Description	loistu	onsis	Alteration	/eath	S you	Origin, Geology Unit, Other Testing & General Observations	Installation
≥		ㅁ리	<u>~</u>	S	(Recovered length) SPT HW/150mm,3,6	DCP	PID (ppm)	_ > ∞	16.0	V-7-7			≥ O w		_ <	_ >	Τ <u>κ</u>	ELLIOT FORMATION	Installation
					HW/150mm,3,6 N=9 (0.45m REC)		16.20m PP=130kPa		-		16.30 -12.02	Clayey SAND: fine to coarse grained, dark grey, clay is low plasticity; with fine to medium grained, sub-angular to sub-rounded gravel. (continued)							-
					(16.45m		16.30m PP=110kPa		-			Sandy CLAY: low to medium plasticity, dark grey and red-brown, with fine to medium grained, sub-angular to sub-rounded gravel.	W>PL	51					
+									-		CL CI								-
Н									17.0 — -12.7										17.0 —
					17.50m				-	H 4	17.40								
-					SPT 1.2.2 N=4				-		-13.12	Gravelly SAND: fine to coarse grained, pale grey, pale brown and orange, gravel is fine to coarse grained, sub-angular to sub-rounded.	W	L					-
\vdash					(0.00m REC) 17.95m				-										-
П									18.0 — -13.7										18.0
- WB									-										-
+									-										-
П					19.00m SPT				19.0 —]: :: s	iP								19.0
+					2,4,4 N=8 (0.45m REC)				-14.7										-
Ħ					19.45m														
-									-										
\vdash									20.0										20.0
									-										
\downarrow					20.50m SPT 11,20/100mm HB				-		20.50 -16.22 20.75	Clayey SAND: fine to coarse grained, orange-brown and brown, clay is low plasticity; with fine to coarse grained, sub-angular to sub-rounded gravel; (Extremely	+					EXTREMELY WEATHERED MATERIAL	1 -
-					N=R (0.25m REC) 20.75m				†		20.73	Weathered material). Hole Terminated at 20.75 m							-
					20.75111				21.0 —	1)	Refusal							21.0
-									-										-
+									-	1									-
									22.0 -										22.0
-									-17.7										-
-									-	1									-
-									-]									
-									23.0										23.0
-									-10.7										-
-]									
-									-										-
	Ш								⊥ _{24.0} _	\perp			_				1	1	

Observations and Comments

Project Client Site Job No

Bundaberg East Levee Department of Housing QLD Bundaberg 30034151

East North Elevation Datum


435018.3 m 7250106.6 m 5.03 m MGA2020-56/AHD

Start Date 28/4/2024 End Date 28/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

Client Department
Site Bundaberg
Job No 30034151

Project Bundaberg East Levee
Client Department of Housing QLD

East North Elevation Datum

435018.3 m 7250106.6 m 5.03 m MGA2020-56/AHD

Start Date 28/4/2024 End Date 28/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth North Survey

Inclination -90°

					JOD INO 30034151				Dat	um	MGA2020-56/AHD			Su	rvey				
		Progress Water (Loss/Return)	Run (TCR) RQD			Testing											£	Member of the Surbar Borehole Identifier:	
	3	s Wa	<u> </u>	ō		resung	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	7 	Depth (m) Elevation Graphic Log	USCS Code		ø.	Condition	<u> </u>	į .	ring	Rock Strength	Borchole Identifier.	BH02
Method	Casing	gres ss/R	E)	Sampling	SPT		VS (kPa)	ter L	Depth (m) <i>Elevation</i> Graphic Log	SS		sture	oditic Sejet	Density	. g	Weathering	X X	Origin, Geology Unit,	
∑ Met	ő	7 5 9	P.	Sar	(Recovered length)	DCP	PID (ppm)	® ≪ I	ga EG Ga EG	SN D	epth RL Soil / Rock Material Description	Mo	ŠŠ			Š Š	Ro	Other Testing & General Observations	Installation
									3.0		CLAY: low to medium plasticity, dark grey to grey, trace fine to medium grained sand. (continued)	w>		F				MARINE SOIL	
$ \cdot $							8.10m PP=120kPa 8.20m PP=120kPa			1									_
+										1									-
					9.00m				9,0	1	9.00: Trace fine to medium grained, sub-rounded gravel								-
					SPT HW/450mm (0.45m REC)		9.00m VS=37kPa 9.20m		4.0	1	9.00. Trace line to medium grained, sub-rounded graver								9.0 —
+					(0.45m REC)		PP=70kPa 9.30m			1									-
+							PP=70kPa												-
									10.0	1									10.0 —
									-5.0	}									10.0
+					10.50m														-
+					SPT HW/450mm (0.45m REC)		10.70m			CL -CI									-
					(0.45III REC)		10.70m PP=70kPa		11.0	-CI									11.0
							11.00m VS=50kPa		-6.0	1									-
+										1									-
								De la		1									-
_ WB					12.00m SPT		40.00	Not Observed	12.0										12.0
l-Í l					HW/450mm (0.45m REC)		12.00m VS=59kPa	Not O	-7.0										-
+					(6110111125)		12.30m PP=70kPa 12.35m												-
							PP=70kPa												
\perp									13.0										13.0 —
+									-8.0]									-
					13.50m SPT						3.50 8.47 Clavey SAND: fine to coarse grained dark grey to grey, clay is low plasticity; w	h - V	,	L				ELLIOT FORMATION	-
					SPT 2,4,4 N=8 (0.45m REC)						8.47 Clayey SAND: fine to coarse grained, dark grey to grey, clay is low plasticity; w fine to coarse grained, sub-angular to sub-rounded gravel.	" "	'	١					
HI					13.95m				14.0										14.0 —
+									90 - 1//	SC									-
									[///		4.80 9.77 Gravelly SAND: fine to coarse grained grey to pale grey gravel is fine to medium		L	MD					
HI					15.00m SPT				15.0		9.77 Gravelly SAND: fine to coarse grained, grey to pale grey, gravel is fine to mediu grained, sub-angular to sub-rounded; with low plasticity clay.	n		MD					15.0 —
					6,8,10 N=18 (0.45m REC) 15.45m					C.									-
					10.40111]:::	SP									

Client Department
Site Bundaberg
Job No 30034151

Project Bundaberg East Levee
Client Department of Housing QLD

East North Elevation Datum

435018.3 m 7250106.6 m 5.03 m MGA2020-56/AHD

Start Date 28/4/2024 End Date 28/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

					JOD INO 30034151					Dat	um	MGA2020-56/AHD			0	urve	у			
		ater n)	RQD			Testing		_		-	4)							£	Member of the Surban Borehole Identifier:	a Jurong Group
Method	Casing	Progress Water (Loss/Return)	Run (TCR) RQD	Sampling	SPT (Recovered length)		PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	Water Leve & Inflow	Depth (m) Elevation	Graphic Log	USCS Code	Depth RL Soil / Rock Material Description	1	Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Geology Unit, Other Testing & General Observations	BH02 Installation
-					16.50m SPT				16.0 -		· SP	Gravelly SAND: fine to coarse grained, grey to pale grey, gravel is fine to mediu grained, sub-angular to sub-rounded; with low plasticity clay. (continued)		W	MD				ELLIOT FORMATION	-
- - - -					3,10,15 N=25 (0.45m REC) 16.95m				17.0 — -12.0		0.0	16.85 Sandy GRAVEL: fine to coarse grained, pale grey, red-brown and white, sand is fine to coarse grained. Gravelly SAND: fine to coarse grained, red-brown, gravel is fine to coarse grains sub-angular to sub-rounded; with low plasticity clay.	_] [- 17.0 — - -
- - - -					18.00m SPT 4,8,15 N=23 (0.45m REC) 18.45m				18.0 -	0000	GP	18.00 12.97 GRAVEL: fine to coarse grained, sub-angular to sub-rounded, grey, red-brown a white, with fine to coarse grained sand. 18.40	d							18.0 —
					19.50m SPT 15,10,16 N=26 (0.45m REC) 19.95m		19.70m PP=480kPa 19.80m PP>500kPa	Not Observed	19.0		sc	 13.37 Clayey SAND: fine to coarse grained, red-brown and pale grey, clay is low plasticity; with fine to coarse grained, sub-angular to sub-rounded gravel. 19.10 CLAY: high plasticity, pale grey and pale red-brown, trace fine grained sand. 		⊵ <pl< td=""><td>VSt - H</td><td></td><td></td><td></td><td>RESIDUAL SOIL</td><td>19.0 —</td></pl<>	VSt - H				RESIDUAL SOIL	19.0 —
A - - - - - - - - -					21.00m SPT 7.16.21 N=37 (0.45m REC) 21.45m		21.30m PP>500kPa 21.40m PP>500kPa	Not Oi	-15.0 21.0 - -16.0	-	СН									21.0
- - - - -					22.50m SPT 10,18,20 N=38 (0.45m REC) 22.95m		22.70m PP-500kPa 22.80m		22.0											22.0 —
- - -					24.00m		PP>500kPa		-18.0	- - - - -										-

Project Bundaberg East Levee Client Department of Housing QLD Site Bundaberg Job No 30034151 Bundaberg

East North Elevation 5.03 m Datum

435018.3 m 7250106.6 m MGA2020-56/AHD

Start Date 28/4/2024 End Date 28/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

			,	Job No 30034151	ı				Dati	um	MGA2020-56/AHD			Sur	ey		- CON	
	ater	Š			Testing											₽	Member of the Surbana Borehole Identifier:	a Jurong Group
	s Wi	(K)	D		resung		eve L	(E, 5	Log	ode		4	_ <u>_</u>	ency	ing	reng	Dorenble Identiller.	BH02
hod	gres.	(LOSS/Netalin) Run (TCR) RQD	nldr			PP (kPa) VS (kPa)	er L flow	Depth (m) Elevation	Graphic Log	USCS Code		1	ditio	siste sity ratio	Weathering	Rock Strength	Origin, Geology Unit, Other Testing &	
Method	Progress Water	Run (F.C.)	Sampling	SPT (Recovered length)	DCP	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	% Mat	De	Gra	SO De	pth L Soil / Rock Material Description	ž Z	S	Consistency Density Alteration	Wea	Roc	General Observations	Installation
				SPT 30/70mm N=R				24.0 -	ПП		N.04 Sandy CLAY: medium to high plasticity, pale grey, sand is fine to medium grain (Extremely Weathered).	ed; / w		VSt - H			EXTREMELY WEATHERED MATERIAL RESIDUAL SOIL	
			SPTLS	30/70mm N=R (0.07m REC)							CLAY: high plasticity, pale grey, trace fine grained sand.	- / "					RESIDUAL SOIL	
								.										_
-								-	$\ \ \ $									-
								25.0 — -20.0	1111									25.0 —
				25.50m SPT				.										
			SPTLS	10,19,25 N=44 (0.45m REC) 25.95m		25.70m PP=450kPa 25.80m PP=450kPa		-										_
\vdash						25.80m PP=450kPa		26.0 										26.0 —
																		_
+								-	$\ \ \ $									-
H				27.00m SPT			erved	27.0 — -22.0										27.0 —
- MB			SPTLS	8,12,18 N=30 (0.45m REC) 27.45m		27.30m	Not Observed			СН								
				27.4011		PP>500kPa 27.40m PP>500kPa	Š											
						FF>JUUKFA		-										_
+								28.0										28.0 —
									Ш									-
				28.50m SPT														
			SPTLS	SPT 9,15,21 N=36 (0.45m REC) 28.95m		28.60m PP=420kPa 28.70m PP=480kPa		-	$\ \ \ $									_
H				26.95111		PP=480kPa		29.0 — -24.0	$\ \ \ $									29.0 —
								-	1									-
								.										_
-		-		30.00m SPT				30.0										30.0
+			SPTLS	6,8,11 N=19 (0.45m REC) 30.45m				-25.0										-
*				30.45m				 		30.	.45 Hole Terminated at 30.45 m Target Depth							
								.			Target Depth							
-								31.0 — -26.0	-									31.0
								-20.0	1									-
]									
								-]									
								1320-										

Geological & **Engineering Log** /ater m) RQD

Project Bundaberg East Levee Client Departmer Site Bundaberg Job No 30034151 Department of Housing QLD Bundaberg

East 435577.6 m North 7250229.6 m Elevation 3.79 m Datum MGA2020-56/AHD

Start Date 30/4/2024 End Date 30/4/2024 Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

Inclination -90° North Survey

		ater	<u></u>	Z Z	-	Testing		_	_	4				_			£,	Member of the Surb Borehole Identifie		up
Method	Casing	Progress Water	(Loss/Retur	Run (TCR) RQD Sampling	SPT (Recovered length)	DCP	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	Water Level	Depth (m) Elevation Graphic Log	USCS Code	Depth <i>RL</i>	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Geology Unit, Other Testing & General Observations	BH0 Installation	
-							0.20m PP>500kPa		3.8 2.1/4.	1	3.79	TOPSOIL Sandy CLAY: medium to high plasticity, dark brown to brown, sand is fine to medium grained; trace fine to coarse grained, sub-angular to sub-rounded gravel; trace rootlets.	w <pl< th=""><th></th><th></th><th></th><th></th><th>TOPSOIL</th><th>BH03</th><th></th></pl<>					TOPSOIL	BH03	
-					0.50m SPT 5,7,7 N=14 (0.45m REC) 0.95m		0.40m PP>500kPa		1.0	-	0.50 3.29	FILL Sandy CLAY: medium to high plasticity, dark brown, sand is fine to medium grained.						FILL	[1.0]	
AD/T-	Md —				1.50m SPT 1,3,3 N=6 (0.45m REC)		1.60m PP=300kPa		28		1.70 2.09	CLAY: high plasticity, red-brown and grey, with fine to medium grained sand.	_	F				ALTUVIAL SOIL		
-					1.95m		1.70m PP=200kPa		2.0 —	СН		CLAT. high plasticity, rec-brown and grey, with line to medium grained sand.		F				, 220, 12, 20, 12	2.0	
-					SPT 9,13,16 N=29 (0.45m REC) 2.95m				3.0	CI -CH	1.29	Sandy CLAY: medium to high plasticity, red-brown and grey, sand is fine to medium grained.		VSt - H					3:0	
-								pə	- [4]	SP	0.59	Gravelly SAND: fine to coarse grained, grey and red-brown, gravel is fine to coarse grained, sub-angular to sub-rounded; with low plasticity clay.	М	D						
-					4.00m SPT 30 HB N=R (0.15m REC) 4.15m			Not Observed	4.0		4.00 -0.21	Sandy CLAY: medium to high plasticity, pink-grey, sand is fine to medium grained; (Extremely Weathered mudstone).	-					EXTREMELY WEATHERED MATERIAL	4.0.	
-									5.0 —										.5:0	
- MB-									-											
									6.0 —										6:0	
					7.00m				7.0		7.00									
-					SPT 9,14,10 N=24 (0.45m REC) 7.45m		7.30m PP=300kPa 7.40m PP=340kPa		-3.2	CI -CH	7.40 -3.61	Sandy CLAY: medium to high plasticity, grey mottled white, sand is fine to coarse grained; trace fine to medium grained, sub-angular to sub-rounded gravel. CLAY: high plasticity, grey to pale grey, trace fine grained sand.	w≈PL 	VSt				ALLUVIAL SOIL		
										СН										

Client Departmer Site Bundaberg Job No 30034151

Project Bundaberg East Levee Department of Housing QLD Bundaberg

East North Elevation Datum

435577.6 m 7250229.6 m 3.79 m MGA2020-56/AHD

Start Date 30/4/2024 End Date 30/4/2024 Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

Inclination -90° North Survey

			,	Job No 30034151					Datur	m IVI	GA2020-56/AHD			surve	y		- CON		
	Progress Water	(Loss/Return) Run (TCR) RQD			Testing											£	Member of the Surb Borehole Identifie		g Group
	ss Ws	eturr CR.) F	Б		resurig	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	□ eke □	Depth (m) Elevation	Graphic Log	OSCS Code Deptt		e E	Consistency Density	Ξ	Weathering	Rock Strength			3H03
Method	gres	ss/R n (T(Sampling	SPT		VS (kPa)	ter L	ev <i>ati</i>	aphic	SS		istur nditic	nsist nsity	Alteration	athe	S S	Origin, Geology Unit, Other Testing &		
Ğ Ğ	F 9 6	<u> </u>	Sar	(Recovered length)	DCP	PID (ppm)	_ ×a (n	, ∰∆ 0.8 г	.5 .5	S Depth	Soil / Rock Material Description	8 8	ÖÖ	Alfe	We	Š	General Observations	Instal	llation
								-4.2	Ш		CLAY: high plasticity, grey to pale grey, trace fine grained sand. (continued)	w≈PL	VSt				ALLUVIAL SOIL		
+				8.50m				4	Ш										
+				SPT 3,4,6 N=10 (0.45m REC)		0.70			Ш										
				(0.45m REC) 8.95m		8.70m PP=410kPa 8.80m PP=440kPa		9.0	Ш	СН									9.0
						PP=440kPa		-5.2	Ш	СП									9.0
								4	Ш										
+								-	Ш										
+				10.00m					Ш	10.00									
				SPT 3,5,6 N=11 (0.45m REC)				10.0	Ш	-6.21		1							10:0
				(0.45m REC) 10.45m		10.30m PP=340kPa			Ш										
+						10.30m PP=340kPa 10.40m PP=420kPa			Ш										-
+									Ш	CH									
								11.0	Ш										11.0
				11.50m					Ш	11.50									
-				SPT				1 -11	Ш	-7.71	CLAY: high plasticity, grey to pale grey mottled white, trace fine grained sand.	1							
-				3,5,7 N=12 (0.45m REC) 11.95m		11.70m PP=450kPa	erved		Ш										
- MB						11.80m PP=450kPa	Not Observed	12.0	Ш										12:0
							ž		\mathbb{R}										
+									Ш										
H				13.00m SPT				13.0	Ш	СН			St						13:0 —
				4,3,5 N=8 (0.45m REC) 13.45m					Ш										
						13.40m PP=120kPa			Ш										
+									Ш										
-								14.0	Ш										14.0 —
								1	Ш										
				14.50m SPT		44.00		1	₩	-14.50 -10.71	Sandy CLAY: medium plasticity, brown to pale brown, sand is fine to coarse grained; trace fine to coarse grained, sub-rounded gravel.	w>PL					ELLIOT FORMATION	$-\left \vdots \cdot \vdots \right $	
+				7,6,5 N=11 (0.45m REC) 14.95m		14.60m PP=110kPa					grained; trace fine to coarse grained, sub-rounded gravel.								::::
H				14.90111				15.0											15.0
								" 1/2		CI									:::=
																		15.5	
				16.00m				$\perp_{16.0}$										16.0	

Geological & **Engineering Log** /ater m) RQD

Project Bundaberg East Levee
Client Department of Housing QLD Client Departmer Site Bundaberg Job No 30034151 Bundaberg

East 435577.6 m North 7250229.6 m Elevation 3.79 m Datum MGA2020-56/AHD

Start Date 30/4/2024 End Date 30/4/2024 Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

Inclination -90° North Survey

### Company of the Co			ate (ď			Testing											£	Member of the Surl Borehole Identific	
Start Control Contro	ethod	asing	ogress Wa oss/Returr	ın (TCR) F	ampling	SPT	resung	PP (kPa) VS (kPa) (P/R uncorrected	ater Level	epth (m) levation	aphic Log	SCS Code		oisture ondition	onsistency	ensity teration	eathering	ock Streng	Origin, Geology Unit, Other Testing &	BH03
### 1	ž	ပ္	호크	_ 전	လိ	,	DCP	PID (ppm)	² ⊗		ত	5 RL					, š	<u> ~</u>		Installation
20.5 m Pre-10aPs 20.5 m Pre-10aPs 20.5 m Pre-10aPs 20.5 m Pre-20aPs 20.5 m Pre-2	- - -					SPT 5,6,6 N=12 (0.45m REC) 16.45m		16.30m PP=110kPa 16.35m PP=150kPa		-12.2		CI	Sandy CLAY: medium plasticity, brown to pale brown, sand is fine to coarse grained; trace fine to coarse grained, sub-rounded gravel. (continued)	w>PL	St				ELLIOT FORMATION	16.5
20.5 m Pre-10aPs 20.5 m Pre-10aPs 20.5 m Pre-10aPs 20.5 m Pre-20aPs 20.5 m Pre-2	-									-13.2										
20.5 m Pre-10aPs 20.5 m Pre-10aPs 20.5 m Pre-10aPs 20.5 m Pre-20aPs 20.5 m Pre-2	- - -					9 13 12 N=25		17.70m PP=230kPa 17.80m PP=220kPa		18.0 —		-13.71	Sandy CLAY: medium to high plasticity, pale brown, white, grey and brown, sand is fine to coarse grained; with fine to coarse grained, sub-angular to sub-rounded gravel.	w≈PL						18:0
20.5 m Pre-10aPs 20.5 m Pre-10aPs 20.5 m Pre-10aPs 20.5 m Pre-20aPs 20.5 m Pre-2	-																			
20.5 m Pre-10aPs 20.5 m Pre-10aPs 20.5 m Pre-10aPs 20.5 m Pre-20aPs 20.5 m Pre-2	-					SPT 4,6,17 N=23 (0.45m REC)		PP=110kPa		19.0 — -15.2										19.0
20.50m 5.71 th N=8 (0.45m REC) 20.70m PP=20MPa 21.0 -17.2 22.00 -17.2 22.00 -18.21 CLAY: high plasticity, grey to pale grey, trace fine grained sand. H RESIDUAL SOIL 22.00: Not enough sample to take pocket penetrometer test 23.50m SPT -18.24 CH -18.24 CLAY: high plasticity, grey to pale grey, trace fine grained sand. H RESIDUAL SOIL 22.00: Not enough sample to take pocket penetrometer test -18.21 CLAY: high plasticity, grey to pale grey, trace fine grained sand. H RESIDUAL SOIL 22.00: Not enough sample to take pocket penetrometer test -18.21 CLAY: high plasticity, grey to pale grey, trace fine grained sand. -18.21	- MB							19.40m PP=150kPa	Observed	20.0		CI -CH	(,0,							
22.00m SPT 7/12 18 N-30 18 N	- - -					SPT 5.7.11 N=18			Not	-76.2										20.5
SPT 7,12,18 N=30 (0.45m REC) 22.45m Characteristic C	- - -					(0.45m REC)		20.70m PP=240kPa 20.80m PP=260kPa												24.0
SPT 7,12,18 N=30 (0.45m REC) 22.45m Characteristic C	- - -																			
23.50m SPT 5 10 14 N=24	-					SPT 7,12,18 N=30 (0.45m REC)							CLAY: high plasticity, grey to pale grey, trace fine grained sand.		Н				22.00: Not enough sample to take pocke	
23.50m SPT 5 10 14 N=24	-									-										
-	-									23.0 — -19.2		СН								23.0
	-					SPT 5,10,14 N=24		23.70m PP=420kPa 23.80m												

Geological & Engineering Log

Client Site Department of Housing QLD Bundaberg Job No 30034151

Project Bundaberg East Levee

East North Datum

435577.6 m 7250229.6 m Elevation 3.79 m MGA2020-56/AHD

Start Date 30/4/2024 End Date 30/4/2024 Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

North Survey

Inclination -90°

					JUD INU 30034 13	1				Dali	uiii iv	IGA2020-30/AND			Surve	-y			
		Progress Water (Loss/Return)	g			- "											드	Member of the Surb	ana Jurong Group
		Kra	§ ₽			Testing		7 -	5 ر	o.	ge			ζ		Б	ugt	Borehole Identifie	
g	Б	ess 'Ref	Ď.	Sampling	·		PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	, Fe	Depth (m) Elevation	Graphic Log	Dept RL		Moisture Condition	ster t	Alteration	Weathering	Rock Strength	Origin Geology Linit	BH03
Method	Casing	ogre		щ	SPT		VS (kPa) (P/R uncorrected	를 를	eptl /eva	aph	SO	h	oist.	isu	era	aat	충	Origin, Geology Unit, Other Testing &	
ĕ	ပ္မ	툿	₽	Sa	SPT (Recovered length)) DCP	PID (ppm)	″ × ×	_ Wi	ຜັ		Soil / Rock Material Description	ဋိဒိ	ပိမိ	¥	×	ಹಿ	General Observations	Installation
							PP=430kPa		24.0			CLAY: high plasticity, grey to pale grey, trace fine grained sand. (continued)	w≈PL					RESIDUAL SOIL	
П									1 7										
П								ved	1 7										
WB-								pser	1 7		СН								
Γì					25.00m			Not Observed	25.0										
П					SPT 6 11 11 N=22			~	25.0 — -21.2										25.0
					SPT 6,11,11 N=22 (0.45m REC) 25.45m		25.30m		1 1		25.4								25.5
					25.45111		25.30m PP=420kPa 25.40m PP=400kPa		1 7	ш	25.4	Hole Terminated at 25.45 m Target Depth							25.5
Γ							PP=400kPa		1 7			Target Depth							1
									26.0										26.0
									-22.2										20.0
Γ																			
												/ X							
L																			
L									27.0 —										27.0 —
									-23.2										27.0
L									28.0										28.0 —
									-24.2										
-																			
L									29.0										29.0 —
-									-25.2										
-									1 4										
-																			
-																			_
-									30.0 —										30.0 —
-									-26.2										_
-									-										_
-																			
-																			
\vdash									31.0										31.0 —
+									-27.2										-
+									-										
F									-										-
-									-										-
	ш							<u> </u>	⊥ _{32.0}						1	<u> </u>			

Geological & Client Departmer Site Bundaberg Job No 30034151 **Engineering Log** /ater m) RQD Testina

Project Bundaberg East Levee
Client Department of Housing QLD Bundaberg

East 435090.0 m North Elevation 7.25 m Datum MGA2020-56/AHD

Start Date 19/4/2024 End Date 21/4/2021 7250122.8 m

Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

Inclination -90° North Survey

Testing PP (kPa) VS (kPa) VS (kPa) PID (ppm) PD (ppm)	Alteration Weathering					L					Condition	ondition	sture ndition	ture	<u>re</u>	<u>a</u>	<u>e</u>	<u>e</u>	ē	₽.	ė	ø)	0	ω <u>=</u>	Ä	=	Š	200	700	Sucv	ency	ency	5				Ē	Ë				2	2	'n	ing	g	пg	5	•				end	eng	eng	0	eng	eno	end	0					3		3																																								
TOPSOIL Sandy CLAY: medium plasticity, dark brown, sand is fine to coarse grained, with fine to medium grained, sub-angular to sub-rounded gravel. St. Cl. 0.20 7.08 TOPSOIL Sandy CLAY: medium plasticity, dark brown, sand is fine to coarse grained, with fine to medium grained. St. St. Sandy CLAY: medium to high plasticity, dark brown, sand is fine to medium grained. St. St. Sandy CLAY: medium to high plasticity, dark brown, sand is fine to medium grained. St. St. St. Sandy CLAY: medium to high plasticity, dark brown, sand is fine to medium grained. St. St. St. Sandy CLAY: medium to high plasticity, dark brown, sand is fine to medium grained. St. St. St. Sandy CLAY: medium to high plasticity, dark brown, sand is fine to medium grained. St. St. St. Sandy CLAY: medium to high plasticity, dark brown, sand is fine to coarse grained, with fine to medium grained. St. St. Sandy CLAY: medium to high plasticity, dark brown, sand is fine to coarse grained, with fine to medium grained. St. St. Sandy CLAY: medium to high plasticity, dark brown, sand is fine to coarse grained, with fine to medium grained. St. St. Sandy CLAY: medium to high plasticity, dark brown, sand is fine to medium grained. St. St. Sandy CLAY: medium to high plasticity, dark brown, sand is fine to coarse grained, with fine to medium grained. St. Sandy CLAY: medium to high plasticity, dark brown, sand is fine to medium grained.	Altera Weati					L) (000	puc	ਲ ਲੋ	- ت		=	=	_	⊐	- :	5 :	5	n :	ä ∺	≝	ੂ		į	ţ	ste	iste	<u>š</u>	র <u>≥</u>	₹	₹	: :	ij	≝				Š	ğ	her	her	heri	heri	<u>=</u>				č	ş	햜	š	ť.	š	ţ	ţ	ţ.		č	i	č	0	i	0		ć	ċ			·	5	hering	2																															
TOPSOIL Sandy CLAY: medium plasticity, dark brown, sand is fine to coarse grained; with fine to medium grained. sub-angular to sub-rounded gravel. St 1.0 2.50m SPT 3.6.7 N=13 (0.45m REC) 2.95m PPS-SO0N-Pa 2.80m PPS-SO0N-Pa 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.						L					_	ŏ	ခ် နှ	Mois	Moist	Moist	Moist	Moist	Moist	Moist	Moist	Moist	Moist	Moist	Cond	5	0	200	2000	Cons	Cons	Cons	Dens	Dens	Dens	2	Altera	Altera			:	+00///	West	Weat	Weat	Weat	Weat	wear				Ċ	Rock	200	Rock	Rock	Rock	Rock	Rock	Rock					500		500							אכמו	Weat	**************************************																														-	֭֭֡֝֝֝֝֟֝֝֝֝֟֝֝֟֝֝֝֓֓֓֓֓֓֓֓֩
Sandy CLAY: medium to high plasticity, dark brown, sand is fine to medium grained. CI -CH		St	St	St	St		-	- -	_	-																	L																							Ī											Ī																															I	I	I	I	I	I		I					٦			
PP>-500kPa A		VSt	VSt	VSt		V					-	:PL	w <pl< td=""><td>w<pi< td=""><td>w<</td><td>, w</td><td>W</td><td>w<</td><td>w<</td><td>w<f-< td=""><td>w<f< td=""><td>w</td><td>w<f< td=""><td>w<pl< td=""><td>PL</td><td></td><td></td><td></td><td></td><td></td><td>\$</td><td>St</td><td>St</td><td>St</td><td>it .</td><td></td><td>4</td><td>4</td><td></td><td></td><td></td><td></td><td>></td><td><u> </u></td><td>></td><td>></td><td><u> </u></td><td>></td><td></td><td></td><td></td><td></td><td></td><td><u>IL</u></td><td><u>r</u></td><td></td><td><u>ir</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></pl<></td></f<></td></f<></td></f-<></td></pi<></td></pl<>	w <pi< td=""><td>w<</td><td>, w</td><td>W</td><td>w<</td><td>w<</td><td>w<f-< td=""><td>w<f< td=""><td>w</td><td>w<f< td=""><td>w<pl< td=""><td>PL</td><td></td><td></td><td></td><td></td><td></td><td>\$</td><td>St</td><td>St</td><td>St</td><td>it .</td><td></td><td>4</td><td>4</td><td></td><td></td><td></td><td></td><td>></td><td><u> </u></td><td>></td><td>></td><td><u> </u></td><td>></td><td></td><td></td><td></td><td></td><td></td><td><u>IL</u></td><td><u>r</u></td><td></td><td><u>ir</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></pl<></td></f<></td></f<></td></f-<></td></pi<>	w<	, w	W	w<	w<	w <f-< td=""><td>w<f< td=""><td>w</td><td>w<f< td=""><td>w<pl< td=""><td>PL</td><td></td><td></td><td></td><td></td><td></td><td>\$</td><td>St</td><td>St</td><td>St</td><td>it .</td><td></td><td>4</td><td>4</td><td></td><td></td><td></td><td></td><td>></td><td><u> </u></td><td>></td><td>></td><td><u> </u></td><td>></td><td></td><td></td><td></td><td></td><td></td><td><u>IL</u></td><td><u>r</u></td><td></td><td><u>ir</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></pl<></td></f<></td></f<></td></f-<>	w <f< td=""><td>w</td><td>w<f< td=""><td>w<pl< td=""><td>PL</td><td></td><td></td><td></td><td></td><td></td><td>\$</td><td>St</td><td>St</td><td>St</td><td>it .</td><td></td><td>4</td><td>4</td><td></td><td></td><td></td><td></td><td>></td><td><u> </u></td><td>></td><td>></td><td><u> </u></td><td>></td><td></td><td></td><td></td><td></td><td></td><td><u>IL</u></td><td><u>r</u></td><td></td><td><u>ir</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></pl<></td></f<></td></f<>	w	w <f< td=""><td>w<pl< td=""><td>PL</td><td></td><td></td><td></td><td></td><td></td><td>\$</td><td>St</td><td>St</td><td>St</td><td>it .</td><td></td><td>4</td><td>4</td><td></td><td></td><td></td><td></td><td>></td><td><u> </u></td><td>></td><td>></td><td><u> </u></td><td>></td><td></td><td></td><td></td><td></td><td></td><td><u>IL</u></td><td><u>r</u></td><td></td><td><u>ir</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></pl<></td></f<>	w <pl< td=""><td>PL</td><td></td><td></td><td></td><td></td><td></td><td>\$</td><td>St</td><td>St</td><td>St</td><td>it .</td><td></td><td>4</td><td>4</td><td></td><td></td><td></td><td></td><td>></td><td><u> </u></td><td>></td><td>></td><td><u> </u></td><td>></td><td></td><td></td><td></td><td></td><td></td><td><u>IL</u></td><td><u>r</u></td><td></td><td><u>ir</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></pl<>	PL						\$	St	St	St	it .		4	4					>	<u> </u>	>	>	<u> </u>	>						<u>IL</u>	<u>r</u>		<u>ir</u>																		<u> </u>																																<u> </u>

Geological & Project Bundaberg East Levee 435090.0 m Start Date 19/4/2024 Contractor DTMR Inclination -90° East Client Department of Housing QLD North 7250122.8 m End Date 21/4/2021 Rig Type Comacchio Geo 405 Azimuth **Engineering Log** Site Bundaberg 7.25 m Elevation Mounting Track North Job No 30034151 MGA2020-56/AHD Datum Survey Progress Water (Loss/Return) Run (TCR) RQD Member of the Surbana Jurong Group Rock Strength Borehole Identifier: Testing OSC Code Depth Depth (m) Elevation Graphic Log Weathering **BH04** Sampling Moisture Condition Consisten Density Alteration Casing Origin, Geology Unit, Other Testing & SPT General Observations Installation (Recovered length) DCP Soil / Rock Material Description 8.0 -MARINE SOIL w≈PL S-F CLAY: medium to high plasticity, dark grey to grey, trace fine grained sand. -0.8 U90 9.10m PP=130-140kPa 10.00m 10.00: Trace fine to medium grained sand HW/450mm 10.20m PP=60kPa 10.30m PP=50kPa (0.45m REC) 11.50m CLAY: low to medium plasticity, dark grey to grey. w>PL HW/450mm 11.70m PP=50kPa 11.80m PP=30kPa (0.45m REC) Not Observed 13.00m HW/450mm (0.45m REC) 13.30m PP=60kPa 13.40m PP=60kPa 14.0 -U90

16.00m

Geological & Client **Engineering Log** R) RQD s Water eturn)

Project Bundaberg East Levee Department of Housing QLD Site Bundaberg Job No 30034151 Bundaberg

East 435090.0 m North 7250122.8 m Elevation 7.25 m Datum MGA2020-56/AHD

Start Date 19/4/2024 End Date 21/4/2021

Contractor DTMR Mounting Track

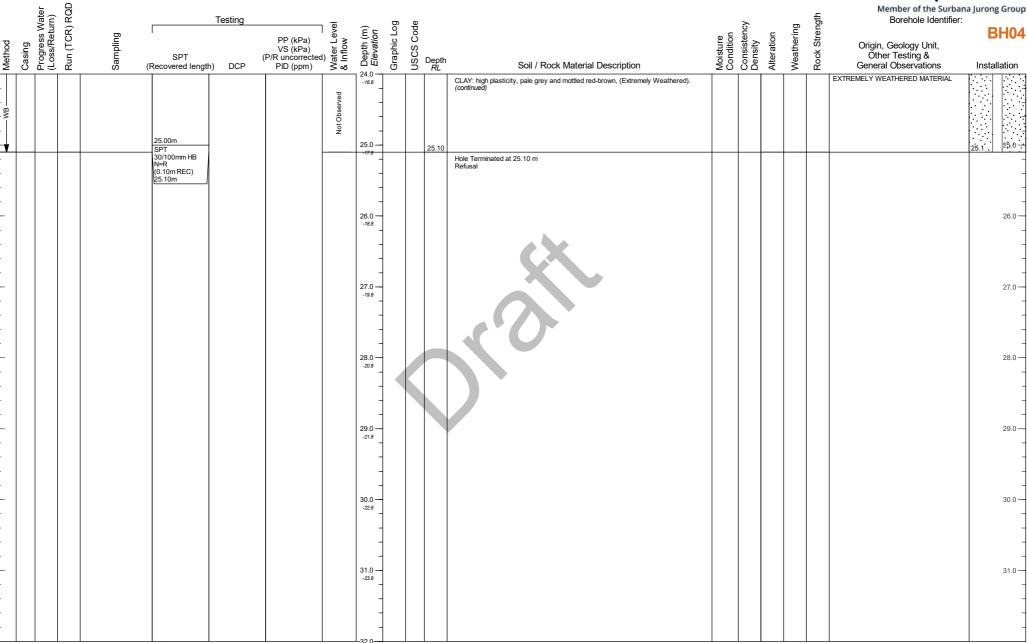
Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

Member of the Surbana Jurong Group Borehole Identifier:

		Vate rn)	, R			Testing		- -	_	ō	Φ					~	gt	Borehole Identifie	
Method	Casing	Progress Wate (Loss/Return)	Run (TCR) RG	Sampling	SPT (Paccy yeard langth)	DCP	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	Vater Leve	Depth (m) Elevation	Graphic Log	epoo SOS Depth RL	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Geology Unit, Other Testing & General Observations	BH04
2	0	1 =	- <u>LE</u>	Ø	(Recovered length)	DOP	LID (bbill)	> ∞	16.0		⊃ RL 16.20	CLAY: low to medium plasticity, dark grey to grey. (continued)	≥ O w>PL		_ ∢	>	<u> </u>	MARINE SOIL	in StallatiOH
-					HW/450mm (0.45m REC)		16.20m PP=150kPa 16.40m PP=150kPa		- - - 17.0 —		CI -9.05	CLAY: medium plasticity, black to dark grey. Sandy CLAY: medium plasticity, black to dark grey, sand is fine to coarse grained. CLAY: medium plasticity, black to dark grey.	 /- 						16.5
- - - - -					17.50m SPT 2.2.4 N=6 (0.45m REC) 17.95m				-10.8 -		17.70 -10.45	Clayey SAND: fine to coarse grained, grey to pale grey, clay is low plasticity; with fine grained, sub-angular to rounded gravel.	W	L				ELLIOT FORMATION	18:0-
-					19.00m SPT 3.9.13 N=22 (0.45m REC) 19.45m		19.30m PP-500kPa 19.40m PP=450kPa	рем	19.0 — -11.8 — -		19.30 -12.05	CLAY: medium to high plasticity, pale grey to pale red-brown.	w≈PL	VSt	_			RESIDUAL SOIL	19.5
- wB					20.50m SPT 5.10,14 N=24 (0.45m REC) 20.95m		20.80m PP=150kPa 20.90m PP=150kPa	Not Observed	20.0 — -12.8 — — — — — — — — — — — — — — — — — — —		CI								20.0:
- - - -					22.00m SPT 6.13,19 N=32 (0.45m REC) 22.45m		22.30m PP>500kPa 22.35m PP>500kPa		22.0 — -14.8 —		СН								22.0
- - - -					23.50m SPT 11,18,27 N=45 (0.45m REC) 23.95m				23.0 —		23.50 <u>23.50</u> -16.35	Gravelly SAND: fine to coarse grained, grey to pale grey, gravel is fine to medium grained, sub-angular to sub-rounded, trace low plasticity clay. CLAY: high plasticity, pale grey and mottled red-brown, (Extremely Weathered).	/ w	VD				EXTREMELY WEATHERED MATERIAL	23.0 -

Client Site Job No 30034151


Project Bundaberg East Levee Department of Housing QLD Bundaberg

East North Elevation Datum

435090.0 m 7250122.8 m 7.25 m MGA2020-56/AHD Start Date 19/4/2024 End Date 21/4/2021

Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

Inclination -90° North Survey

Client Department
Site Bundaberg
Job No 30034151

Project Bundaberg East Levee
Client Department of Housing QLD

East North Datum

435062.0 m 7250140.0 m Elevation 6.66 m MGA2020-56/AHD

Start Date 17/4/2024 End Date 18/4/2024 Contractor DTMR Mounting Track

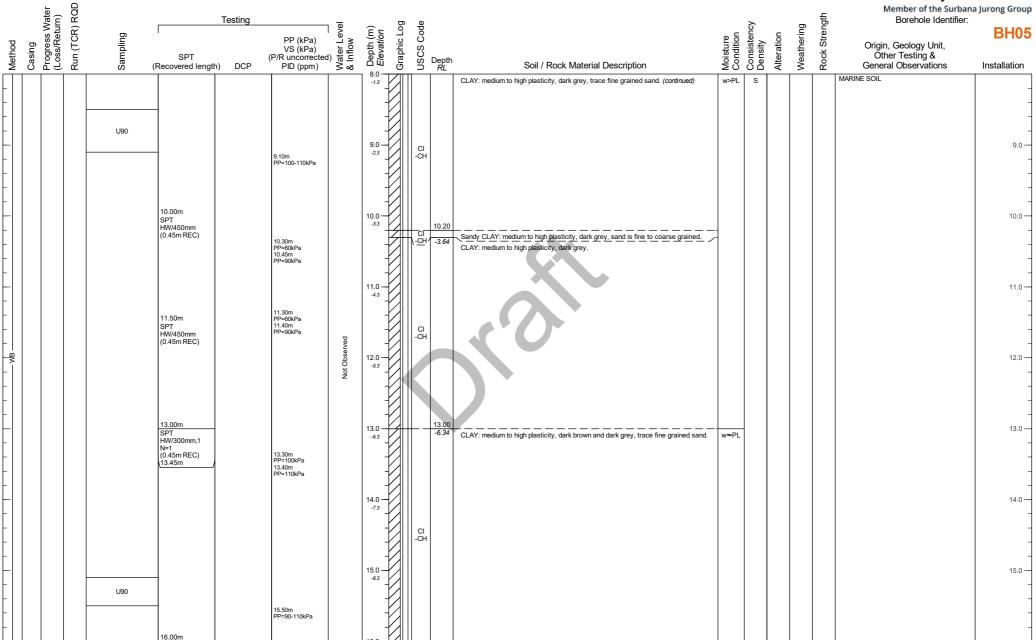
Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

					JOD INO 3003415	1				Dat	um	IVIG	A2U2U-30/AHD		3	urvey	/			
		ater (ר	ZQD			Testing												£	Member of the Surban Borehole Identifier:	a Jurong Group
_		Progress Water (Loss/Return)	Run (TCR) RQD	Вu		. soung	PP (kPa) VS (kPa) (P/R uncorrecte PID (ppm)	eke	Depth (m) Elevation	Graphic Log	USCS Code			e. Gu	Consistency Density	e G	Weathering	Rock Strength		BH05
Method	Casing	ogre:	Ľ)	Sampling	SPT		VS (kPa) (P/R uncorrecte	gater L Inflov	epth <i>Tevat</i>	aphic	SCS	Donth		oistur onditi	nsist	Alteration	eathe	S S	Origin, Geology Unit, Other Testing & General Observations	
Š	ပိ	두그	~	Sa	(Recovered length)) DCP	PID (ppm)		0.0				Soil / Rock Material Description		ပိုင်	₹	Š	<u> </u>	General Observations TOPSOIL	Installation
- ↑	1								6.7	317/	SC	0.20 6.46	TOPSOIL Clayey SAND: fine to medium grained, dark brown, clay is low plasticity; trace fine to coarse grained, sub-angular to sub-rounded gravel.	D					ALLUVIAL SOIL	-
-					0.50m SPT				'	1///			Clayey SAND: fine to coarse grained, dark brown, clay is low plasticity.							
					4,4,4 N=8 (0.45m REC)															
-					0.95m				1.0 -	1//										1.0
AD/T									3.7		sc									-
					1.50m SPT 1,3,6 N=9															
-					(0.45m REC) 1.95m															-
									2.0 -											2.0
					2.50m					<u> </u>	\vdash	2.30 4.36	SAND: fine to coarse grained, brown, trace fine to coarse grained, sub-angular to sub-rounded gravel; trace low plasticity clay.	-						
-					SPT 2.3.4 N=7				.	- - -			sub-rounded gravel; trace low plasticity clay.							-
	PW				(0.45m REC) 2.95m				3.0 -	1-:	sw									3.0
	[3.7	<u> </u>										3.0
-					3.50m				.			3.50	CA							-
					SPT 3,4,3 N=7 (0.45m REC)			pe				3.16	Clayey SAND: fine to coarse grained, brown, clay is low plasticity.							
					3.95m			Not Observed	4.0 -											4.0
-					4.40m			Not	2.7			1								-
					SPT 2.3.3 N=6						sc									
-					(0.45m REC) 4.85m															_
-									5.0 -											5.0 —
- MB																				
-					5.50m SPT 1,1,1 N=2 (0.45m REC)		5.60m				CL \ -Cl 1	5.50	Sandy CLAY: low to medium plasticity, brown to dark brown, sand is fine to coarse	w>PL	S					_
-	Ų │				(0.45m REC) 5.95m		5.60m PP=90-100kPa		.	1	_		\text{\grained.} \frac{f}{\text{CLAY: medium to high plasticity, brown to dark brown, with fine to medium grained sand.} \frac{f}{\text{care}}							-
									6.0 -				Sdilu.							6.0
-										411	CI -CH									_
									.	1										-
					7.00m				7.0 -			7.00								7.0
-					SPT HW/450mm (0.45m REC)		7.20m		-0.3	411		-0.34	CLAY: medium to high plasticity, dark grey, trace fine grained sand.						MARINE SOIL	_
					(5.13.11120)		7.20m PP=30kPa 7.45m PP=40kPa		.		CI -CH									-
							PP=40kPa				-011									

Project Bundaberg East Levee Client Department of Housing QLD Site Bundaberg Job No 30034151

East North Elevation Datum


435062.0 m 7250140.0 m 6.66 m MGA2020-56/AHD

Start Date 17/4/2024 End Date 18/4/2024

Contractor DTMR Mounting Track

Inclination -90° Rig Type Comacchio Geo 405 Azimuth North Survey

Project Bundaberg East Levee Client Department of Housing QLD Site Bundaberg Job No 30034151

East North Elevation

435062.0 m 7250140.0 m 6.66 m

Start Date 17/4/2024 End Date 18/4/2024 Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

Inclination -90° North

Datum MGA2020-56/AHD Survey Progress Water (Loss/Return) Run (TCR) RQD Member of the Surbana Jurong Group Rock Strength Borehole Identifier: Testing epoo SOSO Depth PP (kPa)
VS (kPa)
VS (kPa)
Ullow water Leve
hill (ppm) Depth (m) Elevation Graphic Log Weathering **BH05** Alteration Sampling Moisture Condition Consisten Density Casing Origin, Geology Unit, Other Testing & SPT General Observations (Recovered length) DCP Soil / Rock Material Description Installation 16.0 MARINE SOIL CLAY: medium to high plasticity, dark brown and dark grey, trace fine grained sand. w≈PL -9.3 16.20 HW/450mm 16.20m PP=100kPa (0.45m REC) CLAY: medium to high plasticity, dark grey and grey, with fine to medium grained 16.45m 17.0 --10.3 ELLIOT FORMATION MD Gravelly SAND: fine to coarse grained, grey and pale grey, gravel is fine to coarse grained sub-angular to sub-rounded; trace low plasticity clay 17.50m SPT 10.10.8 N=18 (0.45m REC) 17.95m 18.0 -18.0 -113 SW 19.00m 19.0 -19.0 --12.3 2.5.1 N=6 Sandy CLAY: medium plasticity, grey, sand is fine to coarse grained; with fine to coarse grained sub-angular to sub-rounded gravel. (0.45m REC) CI 19.45m -12.74 L - MD Sandy GRAVEL: fine to coarse grained, sub-angular to sub-rounded, brown and grey, sand is fine to coarse grained; with low plasticity clay Not Observed 20.0 20.0 --13.3 20.10m PP>500kPa 20.50m 7,13,17 N=30 RESIDUAL SOIL CLAY: high plasticity, pale brown and grey. w≈PL (0.45m REC) 20.80m PP>500kPa 20.95m 21.0 21.0 --14.3 CH 22.00m 22 0 0 6 GW 22.20 Sandy GRAVEL: fine to coarse grained, sub-angular to sub-rounded, grey, sand is D 9,16,21 N=37 (0.45m REC) w≈PL CLAY: high plasticity, orange-brown and pale grey, with fine grained sand. 22.30m 22.45m PP=300kPa 22.45m PP>500kPa СН 23.0 23.0 --16.3 23.50m Sandy GRAVEL: fine to coarse grained, sub-angular to sub-rounded, grey, sand is D 11.18.26 N=44 fine to coarse grained. w≈PL (0.45m REC) СН 23.80m CLAY: high plasticity, orange-brown and grey, trace fine grained sand. 23.95m

ter (QD

Project Bundaberg East Levee Client Department of Housing QLD Site Bundaberg Job No 30034151 Bundaberg

East North Elevation 6.66 m Datum

435062.0 m 7250140.0 m MGA2020-56/AHD

Start Date 17/4/2024 End Date 18/4/2024 Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

Inclination -90° North Survey

드

		rate (r	Σ.			Testing			_	ص a	2			>-		Ε.	gth	Borehole Identifier:	
Method	Casing	Progress Wate (Loss/Return)	Run (TCR)	Sampling	SPT (Recovered length	n) DCP	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	Water Leve & Inflow	Depth (m) Elevation	Graphic Log	Depth	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Geology Unit, Other Testing & General Observations	BH05 Installation
- MB							23.90m PP>500kPa		24.0	CI		CLAY: high plasticity, orange-brown and grey, trace fine grained sand. (continued)	w≈PL					RESIDUAL SOIL	_
- \$								Not Observed			24.70							EXTREMELY WEATHERED MATERIAL	
ARR -					25.00m SPT				25.0 —		25.10	CLAY: medium to high plasticity, orange-brown and grey, trace fine grained sand; (Extremely Weathered).						EXTREMELT WEATHERED MATERIAL	25.0 —
-					HB N=R (0.10m REC) 25.10m				-			Hole Terminated at 25.10 m Refusal							
-																			
-									26.0										26.0 —
									-			c×.							_
L									27.0 —										27.0
									-20.3										_
-												3.0							
-									28.0										28.0 —
-																			
									29.0 —										29.0 —
									-22.3										
									30.0										30.0
E																			
E									31.0 —										31.0
-									-24.3										31.0
F																			

Q

Client Departmer Site Bundaberg Job No 30034151

Project Bundaberg East Levee
Client Department of Housing QLD Bundaberg

East North Datum

435707.9 m 7250276.3 m Elevation 8.98 m MGA2020-56/AHD

Start Date 29/4/2024 End Date 29/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

		ate (. g			Testing			_	45				_			£	Member of the Surbana Borehole Identifier:	a Jurong Group
ō	ח	Progress Water (Loss/Return)	Run (TCR) RQ[ing			PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	Leve L	Depth (m) <i>Elevation</i> Graphic Log	USCS Code			ire	Consistency Density	tion	Weathering	Rock Strength		BH06
Method	Casing	rogre	L) un	Sampling	SPT (Recovered length)	DCP	VS (kPa) (P/R uncorrected	(e. Vater Inflo	Depth Eleva sraph	SCS	Depth <i>RL</i>	Soil / Rock Material Description	loistu ondit	consis	Alteration	Veath	sock 8	Origin, Geology Unit, Other Testing & General Observations	Installation
<u> </u>	<u> </u>	<u>п</u> =	· Œ	o	(Recovered length)	DCP	PID (ppin)	> ∞	9.0		0.20	TOPSOIL Sandy CLAY: medium to high plasticity, dark brown, sand is fine to medium grained; trace rootlets.	w≈PL		⋖	>	<u> </u>	TOPSOIL	ITIStallatiOIT
										1-01	8.78	Sandy CLAY: medium to high plasticity, dark brown to brown, sand is fine to coarse		F				ALLUVIAL SOIL	1 1
					0.50m SPT 1,2,3 N=5 (0.45m REC)							grained.							_
-					(0.45m REC) 0.95m		0.70m PP=200kPa 0.80m			CI -CH									-
-5							PP=210kPa		1.0	-CH									1.0
AD/T	PW				1.50m							1.50: Colour changes to pale grey							
+	1				SPT HB N=R (0.10m REC)		1.50m PP=250kPa 1.51m PP>500kPa			·/ sc	1.70		M	VD ,					-
					1.60m		PP>500kPa		2.0		7.18	Clayey SAND: fine to coarse grained, grey to pale grey, clay is low plasticity. Sandy CLAY: medium plasticity, pale grey and brown, sand is fine to medium grained; (Extremely Weathered).	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\VD				EXTREMELY WEATHERED MATERIAL	2.0
$ \cdot $									7.0			gramed, (Extremely Weathered).							_
*					2.50m SPT 30/100mm N=R														
FT					30/100mm N=R (0.10m REC) 2.60m		2.70m PP>400kPa												
\vdash	*				2.00111		2.80m PP>500kPa		3.0										3.0 —
+					4.00m			erved											-
					SPT 10.30/140mm			Not Observed	4.0										4.0
					N=R (0.29m REC) 4.29m		4.30m PP>500kPa	ž											_
+					4.2011		4.40m PP>500kPa		1/										-
									5.0										5.0
- MB									4.0										-
<u> </u>					5.50m SPT					4-	5.50 3.48								-
					14,20,30/130mm N=R (0.43m REC)		5.60m PP>500kPa]		0.40	Sandy CLAY: high plasticity, dark brown to brown, sand is fine to coarse grained; trace fine to coarse grained, sub-angular to sub-rounded gravel; (Extremely Weathered).							
-					(0.43m REC) 5.93m		5.70m PP>500kPa		6.0			•							6.0 —
-									3.0										-
									1										
-									4										-
$ \cdot $					7.00m SPT 14.23.30 N=53				7.0										7.0 —
					14,23,30 N=53 (0.45m REC) 7.45m]										
-									4										
	_								<u> </u>						_				

Project Bundaberg East Levee
Client Department of Housing QLD
Site Bundaberg
Job No 30034151

East North Datum

435707.9 m 7250276.3 m Elevation 8.98 m MGA2020-56/AHD

Start Date 29/4/2024 End Date 29/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

			JOD INO 30034151	1				Dati	JIII IV	IGA2020-50/AHD		Oui	rvey				
ater	(Loss/Return) Run (TCR) RQD			Testing											₽	Member of the Surban Borehole Identifier:	a Jurong Group
× ×	eturr SR) F	ס		resurig	PP (kPa) VS (kPa) (P/R uncorrecte PID (ppm)	eve L	E &	Graphic Log	USCS Code		n ⊑	Consistency Density	=	ring	Rock Strength	Borenole Identiller.	BH06
Method Casing Progress	ss/R	Sampling	0.07		VS (kPa)	er L flow	Depth (m) Elevation	phic	SS		sture	Consistence Density		Weathering	χ Σ	Origin, Geology Unit, Other Testing &	
Met Cas	(Los Rur	San	SPT (Recovered length)	DCP	(P/R uncorrecte PID (ppm)	& ≪	#66 0.8 ∟	Gra	S Dept	h Soil / Rock Material Description	So is	Cor		Me.	Roc	General Observations	Installation
							1.0			Sandy CLAY: high plasticity, dark brown to brown, sand is fine to coarse grained; trace fine to coarse grained, sub-angular to sub-rounded gravel; (Extremely						EXTREMELY WEATHERED MATERIAL	
			8.50m				-			Weathered). (continued)							_
			SPT 17,30/110mm				-		8.75								-
			N=R (0.26m REC) 8.76m				9.0 —		0.23	Sandy CLAY: medium plasticity, dark grey to red-brown, sand is fine to medium grained; low strength; (Extremely Weathered).							9.0
			<u> </u>				0.0										9.0
							-										-
							-										
			10.00m				10.0		10.0								10.0
			SPT 30/80mm N=R (0.08m REC)				-1.0		-1.12	1 · grey, clay is low plasticity, with fine to coarse grained sand, (Extremely							
			10.08m				-			\Weathered). Sandy CLAY: medium plasticity, (Extremely Weathered).							-
							11.0 —										11.0
							-2.0										-
							-										
						ved	-										
- MB						Not Observed	12.0										12.0
-						Not	-3.0 -										
							-										
							-										
							13.0 — -4.0										13.0 —
							[
							-										
							-		44.0								-
							14.0 — -5.0		-5.02		w≈PL	F				RESIDUAL SOIL	14.0
							-										
							-										
			15.00m				-										-
			SPT 2,2,3 N=5 (0.45m REC)				15.0 —		CI								15.0
			(0.45m REC) 15.45m		15.30m PP=60kPa		-										
					15.40m PP=70kPa		-										-
						\perp	16.0								_		
							10.0										

Project Bundaberg East Levee
Client Department of Housing QLD Client Departmer Site Bundaberg Job No 30034151 Bundaberg

East North Elevation 8.98 m Datum

435707.9 m 7250276.3 m MGA2020-56/AHD

Start Date 29/4/2024 End Date 29/4/2024 Contractor DTMR Mounting Track

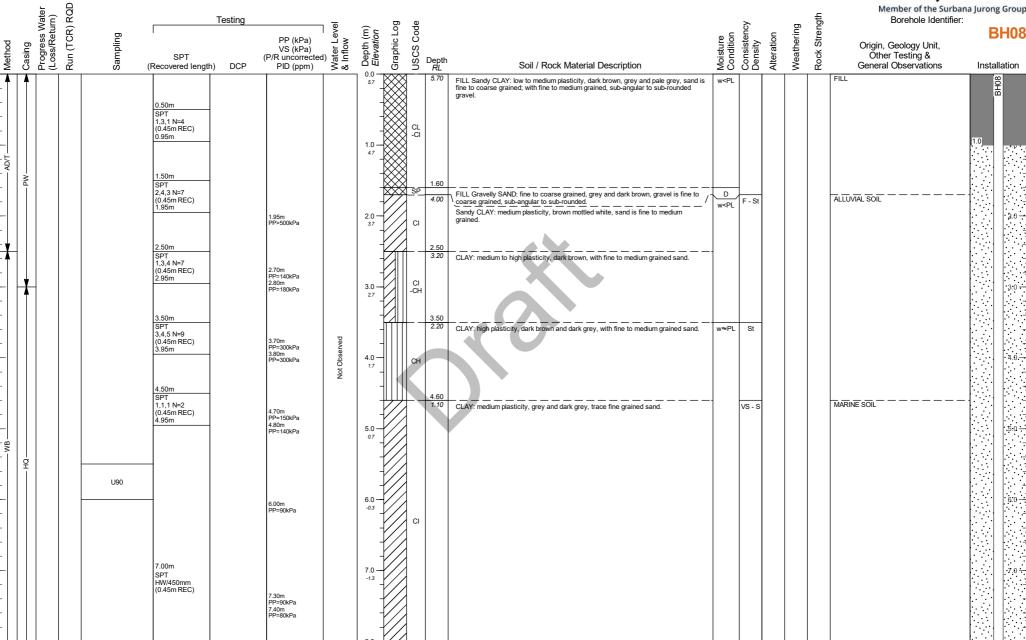
Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

					JOD INO 3003415	1				Dati	um	WIGAZUZU-56/AHD			Surve	≠y			
		ter (8														_	Member of the Surbar	
		Progress Water (Loss/Return)	∞ R			Testing	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	7 👨	5 د	Graphic Log	USCS Code			Consistency Density		Б	Rock Strength	Borehole Identifier:	
7	_	SS	Ŗ	ing	'		PP (kPa)	ˈ ⊌ ×	Depth (m) Elevation	i L	ပိ		e io	y y	io	eri	Stre	Ovinin Coolony Unit	BH06
Ę	sing	gre ss/l	ר	ldu	CDT		VS (kPa)	ter Je	epth eva	ld.	SS		istu	nsis Tsit	rat	ath	*	Origin, Geology Unit, Other Testing &	
Method	Casing	Pro (Lo	Σ.	Sampling	SPT (Recovered length)) DCP	PID (ppm)	∝ ⊗ (n	ДЩ	S.	S Dep	oth L Soil / Rock Material Description	ÖĞ	ΘΘ	Alteration	Weathering	Š	Origin, Geology Unit, Other Testing & General Observations	Installation
						•			16.0	ИII	-7.0	O2 CLAY: medium to high plasticity, pale grey and red-brown, trace fine grained sand		. St				RESIDUAL SOIL	
								ved	-	1/11									1 1
- WB					16.50m			Not Observed	-	MI	CI -CH								
ŀίl					SPT 2,3,6 N=9			0 to	-	1	-CH								-
					2,3,6 N=9 (0.45m REC) 16.95m		16.70m PP=200kPa 16.80m PP=200kPa	Z	-	ИII	16.9	95							
F							16.80m PP=200kPa		17.0		10.	Hole Terminated at 16.95 m							17.0 —
- 1									-0.0	1		Target Depth							
-									-	1									
-									-	-									-
-									-	-									-
\vdash									18.0 —	-									18.0
-									-9.0	-									1 4
- 1									-	-									
- 1									-	-									
- 1									-	1									
_									19.0 —										19.0 —
- 1									-10.0	-									
L										1									
L										1									
									20.0 —	1									20.0
									-11.0										
									_										
									.]									
L																			
									21.0 —										21.0
									-12.0										
									١.										
									Ι.										
									Ι.										
									22.0 —										22.0 —
									-13.0										
									_										
]
									23.0 —										
									-14.0										23.0 —
									-										1 1
										1									1 1
									-	1									1 1
										1									1
	_						-		 24.0			-						+	

Project Bundaberg East Levee Client Department of Housing QLD Site Bundaberg Job No 30034151

East North Elevation Datum


435855.2 m 7250566.6 m 5.70 m MGA2020-56/AHD

Start Date 26/4/2024 End Date 26/4/2024

Contractor DTMR Mounting Track

Inclination -90° Rig Type Comacchio Geo 405 Azimuth North Survey

Geological & **Engineering Log** Nater urn)) RQD

Project Bundaberg East Levee
Client Department of Housing QLD
Site Bundaberg
Job No 30034151

East North Elevation 5.70 m Datum MGA2020-56/AHD

435855.2 m 7250566.6 m

Start Date 26/4/2024 End Date 26/4/2024 Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

Inclination -90° North Survey

	/246/				Testing				б	Φ			>		_	gth	Borehole Identifi	
Method	Casing Progress M	(Loss/Return) Run (TCR) RC	Sampling	SPT (Recovered length)) DCP	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	Water Leve & Inflow	Depth (m) Elevation	Graphic Log	USCS Code	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Geology Unit, Other Testing & General Observations	BH08 Installation
								8.0		1	CLAY: medium plasticity, grey and dark grey, trace fine grained sand. (continued)		VS - S				MARINE SOIL	
- - - -				8.50m SPT HW/450mm (0.45m REC)		8.80m PP=110kPa 8.90m PP=110kPa		9.0 —			8.50: Trace fine to medium grained sand							9.0 +
- - - - -			U90			10.50m PP=430-450kPa		-10.0 — -4.3 — -		СІ								1000
				11.50m SPT 1.3.7 N=10 (0.45m REC) 11.95m			Not Observed	11.0 — -5.3 —		11.3 -5.60 CI -CH 11.9 12.11 -6.40	CLAY: medium to high plasticity, grey to pale grey, with fine to medium grained sand. Sandy CLAY: medium to high plasticity, red-brown, sand is fine to coarse grained;	w	St				ELLIOT FORMATION EXTREMELY WEATHERED MATERIAL ELLIOT FORMATION	11.0~
- - - - - -				13.00m SPT 1,2,2 N=4 (0.45m REC) 13.45m				-13.0 — -7.3 —		sc								13:0
- - - - - - -				14.50m SPT 4.5,4 N=9 (0.45m REC) 14.95m				15.0 — -9.3 — -		CI \-CH\' -9.20	Sandy CLAY: medium to high plasticity, pale brown, sand is fine to medium grained; (Extremely Weathered). Clayey SAND: medium to coarse grained, pale brown and pale grey, with fine to medium grained, sub-rounded gravel.	w	MD				EXTREMELY WEATHERED MATERIAL ELLIOT FORMATION	16.0 -

Geological & **Engineering Log** ter (QD

Project Bundaberg East Levee Client Departmer Site Bundaberg Job No 30034151 Department of Housing QLD Bundaberg

East North Elevation 5.70 m Datum MGA2020-56/AHD

435855.2 m 7250566.6 m

Start Date 26/4/2024 End Date 26/4/2024 Contractor DTMR Mounting Track

Inclination -90° Rig Type Comacchio Geo 405 Azimuth North Survey

드

		vate rn)	, K			Testing				б	Φ				>		_	gt	Borehole Identifi	
Method	Casing	Progress Wate (Loss/Return)	Run (TCR) RG	Sampling	SPT (Recovered length)	DCP	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	Water Leve & Inflow	Depth (m)	Graphic Log	USCS Code	Depth <i>RL</i>	Soil / Rock Material Description	Moisture Condition	Consistency	Alteration	Weathering	Rock Strength	Origin, Geology Unit, Other Testing & General Observations	BH08 Installation
-					SPT 2.3.3 N=6 (0.45m REC) 16.45m				16.0		SC		Clayey SAND: medium to coarse grained, pale brown and pale grey, with fine to medium grained, sub-rounded gravel. (continued)	W	MD				ELLIOT FORMATION	16.5
					17.50m SPT 2,3,3 N=6 (0.45m REC) 17.95m				17.0 - -11.3			17.20 -11.50	Gravelly SAND: fine to coarse grained, pale grey and pale brown, gravel is fine to coarse grained, sub-angular to sub-rounded; with low plasticity clay.							19.0
- !	ФН —				19.00m		18.00m PP>500kPa		18.0		SP									18:0
- - - - - -					SPT 2.4,3 N=7 (0.45m REC) 19.45m			served	19.0 -		sc	19.20	Clayey SAND: fine to coarse grained, pale brown and pale grey, clay is low to medium plasticity; trace fine to medium grained, sub-angular to sub-rounded gravel. 19.60: Possible boulder							19.5
								Not Observed	20.0 -14.3		٧ I	20.50	Sandy GRAVEL: fine to coarse grained, sub-angular to sub-rounded, sand is fine to coarse grained; with medium plasticity clay.							20.5
- - - -					22.00m						GP GP									21.0
- - - -					SPT 4,10,13 N=23 (0.45m REC) 22.45m		22.30m PP>500kPa 22.40m PP>500kPa		22.0	- - -		22.10 -16.40	CLAY: high plasticity, pale grey.	w <pl< td=""><td>VSt</td><td></td><td></td><td></td><td>RESIDUAL SOIL</td><td>- </td></pl<>	VSt				RESIDUAL SOIL	-
- - - - -					23.50m SPT 5,9,13 N=22 (0.45m REC) 23.95m		23.70m PP=420kPa 23.80m		23.0 -17.3		СН			w≈PL						23.0

Project Bundaberg East Levee
Client Department of Housing QLD
Site Bundaberg
Job No 30034151

East North Datum

435855.2 m 7250566.6 m Elevation 5.70 m MGA2020-56/AHD

Start Date 26/4/2024 End Date 26/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

Moisture	Consist	Alteration	Weathe	Rock St	Origin, Geology Unit, Other Testing & General Observations	Installation
l				I	DECIDITAL COLL	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -

Job No 30034151 Datum MGA2020-56/AHD Survey	lurong Group
in G	Jurong Group
	BH08
PP (kPa) 1 A 1 S S S S C I I I I I I I I I I I I I I I	D 1100
Westernation Order design of the polyment of	Installation
2 0 1	
25 0fm 25	25.0 ÷ 25.0 ÷ 27

Project Bundaberg East Levee
Client Department of Housing QLD
Site Bundaberg
Job No 30034151

East North Elevation 5.81 m Datum

435793.4 m 7250637.0 m MGA2020-56/AHD

Start Date 23/4/2024 End Date 23/4/2024 Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

Inclination -90° North Survey

					Job No 30034151	l			Da	itum	IVIG	A2020-56/AHD			Surve	У			
		Nater ım)	, RQD			Testing		n 0	(gc	e Qe				Ś		б	ngth	Member of the Surban Borehole Identifier:	
Method	Casing	Progress Water (Loss/Return)	Run (TCR) RQD	Sampling	SPT (Recovered length)	DCP	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	Water Lev & Inflow	Depth (m) <i>Elevation</i> Graphic Log	USCS Code	Depth RL	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Geology Unit, Other Testing & General Observations	BH09 Installation
- 1	A								5.8			FILL Sandy CLAY: low plasticity, dark brown, sand is fine to coarse grained; with fine to coarse grained, sub-angular to sub-rounded gravel.	w <pl< td=""><td></td><td></td><td></td><td></td><td>FILL</td><td></td></pl<>					FILL	
AD/T — 1					0.50m SPT 4.6.8 N=14 (0.45m REC) 0.95m		0.80m PP>500kPa 0.90m PP>500kPa		1.0	CL	1.20 4.61	FILL Sandy CLAY: medium to high plasticity, dark brown mottled red-brown, sand is fine to medium grained; with fine to medium grained, sub-angular to sub-rounded	-						1.0 —
- - - - -	- PW				1.50m SPT 3,5,7 N=12 (0.45m REC) 1.95m		1.80m PP=450kPa 1.90m PP>500kPa		2.0	CI CH		gravel.							2.0
- 	•				SPT 1.7.9 N=16 (0.45m REC) 2.95m		2.70m PP>500kPa 2.80m PP>500kPa		3.0		3.50	3.00: Possible boulder							3.0 —
- - - - -					SPT 5,8,12 N=20 (0.45m REC) 3.95m			Not Observed	4.0 —	СН	2.31	CLAY: high plasticity, brown mottled dark brown, with fine to medium grained sand.	w≈PL	VSt				ALLUVIAL SOIL	4.0 —
- - MB -					SPT 2,2,3 N=5 (0.45m REC) 4,95m 5.50m SPT		4.70m PP=200kPa 4.80m PP=250kPa		5.0	CI	5.30 0.51	CLAY: medium to high plasticity, grey and red-brown, with fine grained sand. CLAY: low to medium plasticity, dark grey to grey.		F VS - S				MARINE SOIL	5.0 —
- - - - -					SPT HW/150mm,1,2 N=3 (0.45m REC) 5.95m		5.70m PP=150kPa 5.80m PP=170kPa		6.0	CL -CI									6.0 —
- - - - - -					7.00m SPT HW/300mm,1 N=1 (0.45m REC) 7.45m		7.30m PP=60kPa 7.40m PP=60kPa 7.70m PP>500kPa 7.80m		7.0	CI	7.00 -1.19	Sandy CLAY: medium plasticity, dark brown, sand is fine grained.	w>PL	VS					7.0

Client Department
Site Bundaberg
Job No 30034151

Project Bundaberg East Levee
Client Department of Housing QLD

East North Elevation Datum

435793.4 m 7250637.0 m 5.81 m MGA2020-56/AHD

Start Date 23/4/2024 End Date 23/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth North Survey

Inclination -90°

					JOD INO 30034151					Dati	um	MGA	2020-56/AHD			Surve	≠y			
		ater (ר	RØD			Testing				_								£	Member of the Surbar Borehole Identifier:	
Method	Casing	Progress Water (Loss/Return)	Run (TCR) RQD	Sampling	SPT (Recovered length)		PP (kPa) VS (kPa) (P/R uncorrecte PID (ppm)	© Water Level & Inflow	」 ◎ Depth (m) ◎ <i>Elevation</i>	Graphic Log	USCS Code	Depth <i>RL</i>	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Geology Unit, Other Testing & General Observations	BH09 Installation
							PP>500kPa		-2.2		CI	8	Sandy CLAY: medium plasticity, dark brown, sand is fine grained. (continued)	w>PL					MARINE SOIL	_
+					8.50m							8.50								_
					SPT 16,13,10 N=23 (0.45m REC)				'			-2.69 g	Gravelly SAND: fine to coarse grained, grey to pale grey, gravel is fine to medium grained, sub-angular to sub-rounded; with medium plasticity clay.	W	D				ELLIOT FORMATION	-
					8.95m				9.0 -											9.0
											SP									
+																				-
					10.00m SPT				10.0 -	7.7.7		10.00								10.0
+					1,1,2 N=3 (0.45m REC) 10.45m				-4.2			-4.19 t	Clayey SAND: medium to coarse grained, pale grey, clay is low plasticity; trace fine o medium grained, sub-angular to sub-rounded gravel.		VL - L					-
					10.45m															
+													X							-
									11.0 -											11.0 —
					11.50m															-
					SPT 1,2,3 N=5 (0.45m REC)			pey			SC		10							
- WB					11.95m			Not Observed	12.0 -											12.0 —
								Not												
-																				-
					13.00m				13.0 -											13.0 —
					SPT 4,7,11 N=18 (0.45m REC)				-7.2	///	-+	13.20 -7.39	Sandy GRAVEL: fine to coarse grained, sub-angular to sub-rounded, pale grey and		MD - E	0				-
					13.45m					000		p	pale red brown, sand is fine to coarse grained; with low plasticity clay.							
										000	GP									-
									14.0 -	2000										14.0 —
-					14.50m					000										_
					SPT 3,5,6 N=11 (0.45m REC)					**//		-8.79 C	Clayey SAND: fine to coarse grained, pale grey and red-brown, clay is low to nedium plasticity; trace fine to coarse grained, sub-angular to sub-rounded gravel.		MD	1				-
					14.95m				15.0 -			"	nedium prasuory, it ace time to coarse granieu, sub-arigurar to sub-founded graver.							15.0 —
$ \cdot $									-9.2	1//	SC									-
+					16.00m															-
							•	-	 16.0 	/	-			-		-			•	

Geological & Engineering Log

Client Site Bundaberg
Job No 30034151

Project Bundaberg East Levee
Client Department of Housing QLD Bundaberg

East North Elevation 5.81 m Datum

435793.4 m 7250637.0 m MGA2020-56/AHD

Start Date 23/4/2024 End Date 23/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

					JOD INO 30034151					Datum	IVIV	5A2U2U-50/AHD			Surve	y			
		Progress Water (Loss/Return)	Run (TCR) RQD			Testing											£	Member of the Surbar Borehole Identifier:	
		s Wa eturr	(K)	ס		resurig		eve	Œ, K	Log			a ⊑	ency	Ē	ring	reng	Dorenole Identilier.	BH09
Method	Casing	gres ss/R	T) r	Sampling	SPT		PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	ter L	Depth (m) Elevation	Graphic Log	3		sture	Consistency Density	Alteration	Weathering	Rock Strength	Origin, Geology Unit, Other Testing &	
Met	Cas	Pro (Lo	Rur	San	(Recovered length)	DCP	PID (ppm)	& Wai			Depth	Soil / Rock Material Description	ŠŞ	S P	Alte	We	Roc	General Observations	Installation
					SPT 1,2,1 N=3 (0.45m REC)				-10.2	G G	P 16.20 -10.39	Sandy GRAVEL: fine to coarse grained, pale grey, red-brown, sand is fine to coarse grained; with low plasticity clay.	w	L				ELLIOT FORMATION	
-1					(0.45m REC) 16.45m						-10.39	Clayey SAND: fine to coarse grained, pale grey and red-brown, clay is low to medium plasticity; trace fine to medium grained, sub-angular to sub-rounded gravel.		MD					_
+									-										-
\Box									17.0 —	<i>////</i> // s	С								47.0
									-11.2										17.0 —
WB _					17.50m				-		17.50								
					SPT 2,5,7 N=12 (0.45m REC)			D.			P -11.79	Sandy GRAVEL: fine to coarse grained, sub-angular to sub-rounded, pale grey, sand is fine to coarse grained; with low plasticity clay.	1						-
					(0.45m REC) 17.95m			Serve	18.0			Clayey SAND: fine to coarse grained, red-brown and brown, clay is low to medium plasticity; trace fine to coarse grained, sub-angular to sub-rounded gravel.							18.0
								Not Observed	18.0 —										10.0
+									-										-
									-	///									-
T.					19.00m				19.0										19.0
- 1					SPT 3,2,16 N=18 (0.00m REC)				-13.2										_
RR I					19.45m				-										-
*									20.0	/./.;	19.95	Hole Terminated at 19.95 m							20.0 —
-									-14.2			Target Depth							-
-									1										-
-									21.0 —										21.0 —
-									-15.2										-
-									-										
-									22.0										22.0 —
+									-70.2										-
-																			
-									23.0										23.0 —
F																			
-																			
		Ш							L _{24.0}						L				

Client Department
Site Bundaberg
Job No 30034151

Project Bundaberg East Levee
Client Department of Housing QLD

East 435797.5 m North 7250732.5 m Elevation 8.15 m Datum MGA2020-56/AHD

Start Date 24/4/2024 End Date 24/4/2024 Contractor DTMR Mounting Track

Rig Type Comacchio Geo 405 Azimuth

Inclination -90° North Survey

			JOD INO 3003415	1				Dat	tum	IVIC	5A2U2U-00/AHD			Surve	y			
ater	n) RQD			Testina		_			•							£	Member of the Surbana Borehole Identifier:	Jurong Group
Casing Progress W	(Loss/Retur	Sampling	SPT		PP (kPa) VS (kPa) (P/R uncorrecte PID (ppm)	© Water Level	Depth (m)	Graphic Log	USCS Code	Depth <i>RL</i>	Soil / Rock Material Description	Moisture Condition	Consistency Density	Alteration	Weathering	Rock Streng	Origin, Geology Unit, Other Testing & General Observations	BH10 Installation
			0.50m SPT 3.3,3 N=6 (0.45m REC) 0.95m				1.0 -		CL	8.15	FILL Sandy CLAY: low plasticity, dark brown mottled white and pale grey, sand is fine to medium grained; with fine to medium grained, sub-rounded gravel.	w <pl< td=""><td></td><td></td><td></td><td></td><td>FILL</td><td>1.0—</td></pl<>					FILL	1.0—
AAA			1.50m SPT 1.2.8 N=10 (0.45m REC) 1.95m				2.0 -			1.30 6.85	FILL Clayey SAND: fine to coarse grained, grey and dark grey, clay is low plasticity; with fine to coarse grained, sub-angular to sub-rounded gravel.	D						2.0—
			2.50m SPT 1.3.4 N=7 (0.45m REC) 2.95m				3.0 - 5.2		sc			W					2.50: Losing water	3.0 —
,			3.50m SPT 24.2,HB N=R (0.45m REC) 3.95m			Not Observed	4.0 - 4.2			4.50	3.50: Possible boulder						3.80: Casing reinstalled to 3.8m 4.00: Changed to PCD bit due to progress	4.0 —
			SPT 23,30/20mm HB N=R (0.17m REC) 4.67m				5.0 - 3.2		CI	3.65 5.50	Sandy CLAY: medium plasticity, brown to dark brown, sand is fine to coarse grained; with fine to medium grained, sub-angular to sub-rounded gravel.	w≈PL	Н				ALTUVIAL SOIL	5.0—
			SPT 2.3.1 N=4 (0.45m REC) 5.95m		5.70m PP=300kPa 5.80m PP=350kPa		6.0 - 2.2		CI -CH	2.65	CLAY: medium to high plasticity, grey and red-brown, with fine to medium grained sand.		S					6.0
			7.00m SPT 1.2.4 N=6 (0.45m REC) 7.45m		7.30m PP=200kPa 7.40m PP=210kPa		7.0 - 1.2		CI -CH	7.00 1.15	CLAY: medium to high plasticity, grey, pale orange-brown.		F	_				7.0—
	** -		Progress Water (Loss/Return) Run (TCR) RQD Sampling	Duny Sept (Recovered length) SPT (Recovered length) 0.50m SPT (Recovered length) 1.50m SPT (1,2,8 M=10 (0.45m REC)	Description Description	Second S	SPT SPT	Testing PP (kPa) No No No No No No No N	Testing	COO Color Color	Testing	Post Post	Testing PP (NPs) PD (PPs) PD	Testing	Testing PP (LPs) PP (LPs)	Post Post	Section Sect	Post Post

Project Bundaberg East Levee Client Departmer Site Bundaberg Job No 30034151 Department of Housing QLD Bundaberg

East North Elevation 8.15 m Datum

435797.5 m 7250732.5 m MGA2020-56/AHD

Start Date 24/4/2024 End Date 24/4/2024 Contractor DTMR Mounting Track

Inclination -90° Rig Type Comacchio Geo 405 Azimuth North Survey

		JOD NO 30034131	1			D.	atum	IVIO	A2020-50/ADD		•	Sui ve	y			
Method Casing Progress Water (Loss/Return)	ZQD		Testing											£	Member of the Surban Borehole Identifier:	a Jurong Group
ss W.	CR) I		rooting	PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)	7 <u>8</u> (Depth (m) <i>Elevation</i> Graphic Log	USCS Code			a 5	Consistency Density	Ľ	ring	Rock Strength		BH10
Method Casing Progres: (Loss/Re	Run (TCR Sampling	SPT		VS (kPa)	ter L	Depth (m) Elevation Graphic Log	CS (istur	nsist nsity	Alteration	Weathering	S S	Origin, Geology Unit, Other Testing &	
Cas (Lo	Sar	(Recovered length)	DCP	PID (ppm)			ns	Depth <i>RL</i>	Soil / Rock Material Description	8 8	ē ē	Alfe	We	Š	General Observations	Installation
						0.0			CLAY: medium to high plasticity, grey, pale orange-brown. (continued)	w≈PL	F				ALLUVIAL SOIL	
		8.50m							8.50: Colour changes to brown, red-brown and grey							-
		SPT 3,8,10 N=18 (0.45m REC)		8 70m					c.oc. color charges to storm, reconstructing gray		VSt					-
		8.95m		8.70m PP=410kPa 8.80m PP=400kPa		9.0	CI -CH									9.0
				PP=400KPa		-0.8	-CH	'								-
-																-
																-
		10.00m				10.0	Щ.	10.00								10.0
		SPT 7,10,16 N=26 (0.45m REC) 10.45m				-1.8		-1.85	CLAY: low to medium plasticity, brown and grey, with fine to medium grained sand.	w <pl< td=""><td></td><td></td><td></td><td></td><td></td><td></td></pl<>						
		10.45m		10.30m PP>500kPa 10.40m												-
				10.40m PP>500kPa			CL									
						11.0										11.0
-						-2.8										-
		11.50m					4-	11.50 -3.35	Control CLAVA and the close to the control of the c	w≈PL						-
		SPT 7,8,8 N=16 (0.45m REC)		11.60m PP>500kPa	pe/				Sandy CLAY: medium plasticity, grey to pale grey and brown, sand is fine to medium grained.	W-EPL						
- B - W		11.95m		11.80m PP=200kPa	Not Observed	12.0										12.0
					Not	" +//		1								-
						1//										
\vdash		13.00m SPT				13.0	CI				St					13.0 —
		SPT 2,2,5 N=7 (0.45m REC) 13.45m		13 30m		" +//										-
		10.4011		13.30m PP=250kPa 13.40m PP=250kPa		1 1/										
				PP-250KPA												_
						14.0										14.0 —
		14.50m SPT					/- -	14.50 -6.35	Clayey SAND: fine to coarse grained, pale brown and pale grey, clay is low plasticity; with fine to medium grained, sub-angular to sub-rounded gravel.	w	MD				ELLIOT FORMATION]
		SPT 6,6,5 N=11 (0.00m REC) 14.95m							plasticity; with fine to medium grained, sub-angular to sub-rounded gravel.							
						15.0										15.0 —
						1//	sc									
						4%										
+		16.00m				1/										-
		10.00111			1	16 n 1/2 /				1					l	1

oD OD

Project Bundaberg East Levee Client Departmer Site Bundaberg Job No 30034151 Department of Housing QLD Bundaberg

East North Elevation 8.15 m Datum

435797.5 m 7250732.5 m MGA2020-56/AHD

Start Date 24/4/2024 End Date 24/4/2024 Contractor DTMR Rig Type Comacchio Geo 405 Azimuth Mounting Track

Inclination -90° North Survey

		Vate rn)	R			Testing				б	Φ			>			gt	Borehole Identifier:	
_		Progress Wate (Loss/Return)	CR)	Бu			PP (kPa) VS (kPa) (P/R uncorrected PID (ppm)		Depth (m) Elevation	Graphic Log	OSC Code Depth		e G	Consistency Density	E	Weathering	Rock Strength		BH10
Method	Casing	ogre ss/F	n (T	Sampling	SPT		VS (kPa)	nfer ''	epth <i>evat</i>	aphi	S		istur	nsis nsit	Alteration	athe	S S	Origin, Geology Unit, Other Testing &	
₩	S	유 의	NZ.	Sal	(Recovered length)	DCP	PID (ppm)	" ≥ = ≥ ×	— ∐i ∐i □ 16.0 —	ğ	S Deptr	Soil / Rock Material Description	≗ి		<u>¥</u> _	×	&	General Observations	Installation
					SPT 3,4,4 N=8 (0.45m REC)				-7.8			Clayey SAND: fine to coarse grained, pale brown and pale grey, clay is low plasticity; with fine to medium grained, sub-angular to sub-rounded gravel.	w	MD				ELLIOT FORMATION	
					(0.45m REC) 16.45m				_			(continued)							
-									-										-
+									-		SC								
\Box									17.0 — -8.8										17.0 —
									_										
					17.50m SPT					//:	-9.35	Gravelly SAND: fine to coarse grained, pale grey and pale brown, gravel is fine to coarse grained, sub-angular to sub-rounded; with low plasticity clay.		L - ME	0				
-					SPT 4,4,2 N=6 (0.45m REC) 17.95m			rved	-			coarse grained, sub-angular to sub-rounded; with low plasticity clay.							
- WB					17.99111			Not Observed	18.0										18.0 —
+								Not	-9.6										-
\vdash									-										1
									-		SP								1 1
									19.0 —										19.0 —
-									-10.8	::::									
+					19.50m				-										
\vdash					SPT 8,7,6 N=13				-										
₩.					8,7,6 N=13 (0.00m REC) 19.95m						19.95								20.0
									20.0			Hole Terminated at 19.95 m Target Depth							20.0
									-										
-									-										-
-									-										-
									21.0										21.0 —
									-										1
-									-										
-									22.0										22.0 —
-									-13.8										-
-									-										
									-										
									23.0 —										23.0
-									-14.8										20.0
F									-										
+									-										-
+									-										
									 24.0- 			I.						-	

Appendix C SPT Photographs

Photo 1: BH01 SPT01

Photo 2: BH01 SPT02

Date Taken:	-		Client:	DHLGP	PW	
Taken By:	СР		Project:	Bundaberg E	ast Lavas	
Checked By:	BY	SMEC	Project.	Bulldaberg E	asi Levee	
		Member of the Surbana Jurong Group	Title:	Site Photo	graphs	
			Project No:	30034151	Page:	1 of 74

Photo 3: BH01 SPT03

Photo 4: BH01 SPT04

Date Taken:	•	
Taken By:	СР	
Checked By:	BY	
		М

С	Client:	Γ	OHLGPP\	N		
P	Project:	Bunda	berg Eas	st Levee		
Т	itle:	Site	Photogr	aphs		
F	Project No:	30034151		Page:	2 of 74	

Photo 5: BH01 SPT05

Photo 6: BH01 SPT06

Date Taken:	-		Client: DHLGPPW			
Taken By:	СР		Project:	Bundaberg East Levee Site Photographs		
Checked By:	BY	SMEC	Project.			
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	3 of 74

Photo 7: BH01 U01

Photo 8: BH01 SPT07

Date Taken:	-		Client:	DHLGPPW		
Taken By:	СР		Project:	Pundahara East Lovoo		
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photographs		
			Project No:	30034151	Page: 4 of 74	

Photo 9: BH01 SPT08

Photo 10: BH01 SPT09

Date Taken:	-		Client:	DHLGPF	w	
Taken By:	СР		• '	Bundaberg East Levee Site Photographs		
Checked By:	BY	SMEC				
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	5 of 74

Photo 11: BH01 SPT10

Photo 12: BH01 SPT11

Date Taken:	-		Client:	DHLGPPW Bundaberg East Levee Site Photographs	
Taken By:	СР		Project:		
Checked By:	BY	SMEC	Froject.		
		Member of the Surbana Jurong Group	Title:		
			Project No:	30034151	Page: 6 of 74

Photo 13: BH01 SPT12

Photo 14: BH01 SPT13

Date Taken:	-		Client:	Γ	DHLGPPW	
Taken By:			Project:	Runda	borg East Loves	
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site	Photographs	
			Project No:	30034151	Page:	7 of 74

Photo 15: BH01 SPT14

Photo 16: BH01 SPT15

Date Taken:	-	
Taken By:	СР	
Checked By:	BY	SI
		Member of the Surbana

SMEC
Member of the Surbana Jurong Group

Client:	D	HLGPPW			
Project:	Bundaberg East Levee				
Title:	Site Photographs				
Project No:	30034151	Page: 8 of 74			

Photo 17: BH02 SPT01

Photo 18: BH02 SPT02

Client:

Date Taken:	-	
Taken By:	СР	
Checked By:	BY	SMEC
		Member of the Surbana Jurong Group

Olibrit.	DITEGLI	**				
Project:	Bundaberg East Levee					
Title:	Site Photographs					
Project No:	30034151	Page:	9 of 74			

DHI GPPW

Photo 19: BH02 SPT03

Photo 20: BH02 SPT04

Date Taken:	-		Client:	nt: DHLGPPW				
Taken By:	СР	CAN CALE	Project:	Project: Bundaberg East Levee				
Checked By:	BY	SMEC	Floject. Buildaberg East Level	Site Photographs				
		Member of the Surbana Jurong Group	Title:					
			Project No:	30034151	Page:	10 of 74		

Photo 21: BH02 U01

Photo 22: BH02 SPT05

Date Taken:	-		Client:	DHLGPPW		
Taken By:	СР		Project:	Bundaberg East Levee		
Checked By:	BY	SMEC	Froject.	bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photographs		
			Project No:	30034151	Page:	11 of 74

Photo 23: BH02 SPT06



Photo 2: 4BH02 SPT07

Date Taken:	-		Client:	DHLGPPW Bundaberg East Levee Site Photographs			
Taken By:	СР		Project: Bundaberg East Leve				
Checked By:	BY	SMEC	Project.			ject. Buildaberg East Levee	
		Member of the Surbana Jurong Group	Title:				
			Project No:	30034151	Page:	12 of 74	

Photo 25: BH02 SPT08

Photo 26: BH02 SPT09

Date Taken:	-		Client:	DHLGPF	w	
Taken By:	СР		Project:	Bundaberg East Levee Site Photographs		
Checked By:	BY	SMEC	Project.			
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	13 of 74

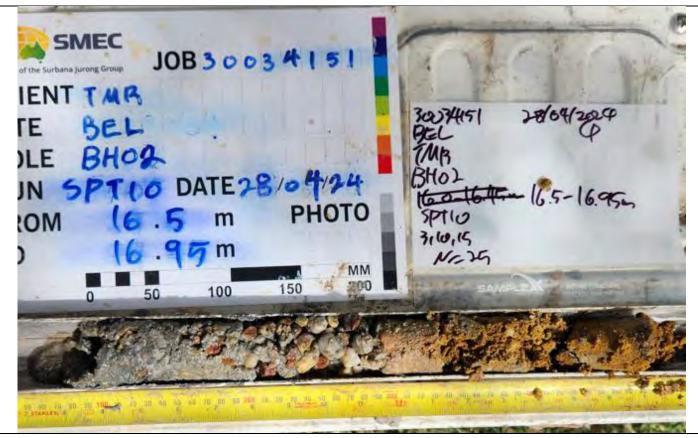


Photo 27: BH02 SPT10

Photo 28: BH02 SPT11

Date Taken:	-
Taken By:	СР
Checked By:	BY

Client:		HLGPPW			
Project:	Bundal	oerg East Levee			
Title:	Site Photographs				
Project No:	30034151	Page:	14 of 74		

Photo 29: BH02 SPT12

Photo 30: BH02 SPT13

Date Taken:	-		Client:	DHLGPF	w	
Taken By:	СР		Project:	Bundaberg East Levee Site Photographs		
Checked By:	BY	SMEC	Buildaberg East Levee			
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	15 of 74

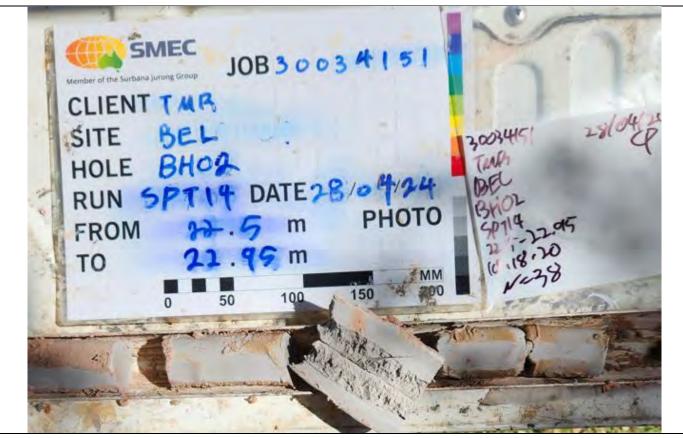


Photo 31: BH02 SPT14

Photo 32: BH02 SPT15

Date Taken:	-		Client:	DHLGPI	PW .	
Taken By:	СР		Project:	Bundaberg East Levee		
Checked By:	BY	SMEC	Project.	bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photographs		
			Project No:	30034151	Page:	16 of 74

Photo 33: BH02 SPT16

Photo 34: BH02 SPT17

Date Taken:	-		Client:	DHLGPPW			
Taken By:	СР		Project:	Bundaberg East Levee Site Photographs			
Checked By:	BY	SMEC	Froject.			-roject. Bulldaberg E	
		Member of the Surbana Jurong Group	Title:				
			Project No:	30034151	Page:	17 of 74	

Photo 35: BH02 SPT18

Date Taken:	-
Taken By:	СР
Checked By:	BY

Client:	DHLGPP	w			
Project:	Bundaberg East Levee				
Title:	Site Photographs				
Project No:	30034151	Page:	18 of 74		

Photo 36: BH03 SPT01

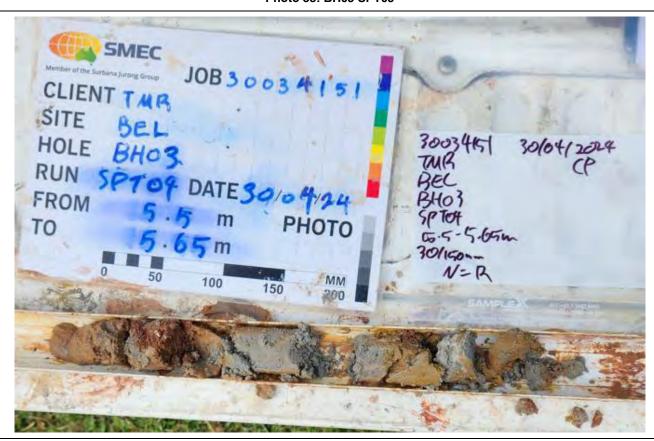


Photo 37: BH03 SPT02

Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Project:	Bundaberg East Levee Site Photographs		
Checked By:	BY	SMEC	Project.			
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	19 of 74

Photo 38: BH03 SPT03

Photo 39: BH03 SPT04

Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Project: Bundaberg East Lev	Bundaberg East Levee Site Photographs		
Checked By:	BY	SMEC				
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	20 of 74

Photo 40: BH03 SPT05

Photo 41: BH03 SPT06

Date Taken:	-	Client: DHLGPPW	PW			
Taken By:	СР		Project:	Bundaberg East Levee Site Photographs		
Checked By:	BY	SMEC	Project.			
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	21 of 74

Photo 42: BH03 SPT07

Photo 43: BH03 SPT08

Date Taken:	-	
Taken By:	СР	
Checked By:	BY	SMEC
		Member of the Surbana Jurong Group

Client:	DHLGPF	w	
Project:	Bundaberg East Levee		
Title:	Site Photog	raphs	
Project No:	30034151	Page:	22 of 74

Photo 44: BH03 SPT09

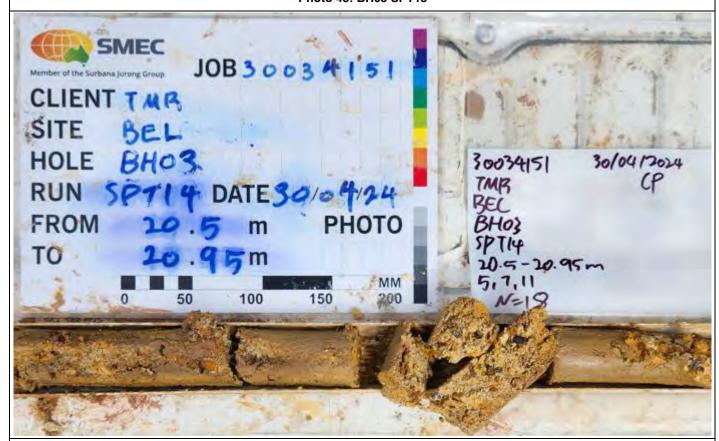
Photo 45: BH03 SPT10

Date Taken:	-
Taken By:	СР
Checked By:	BY

Client:		HLGPPW		
Project:	Bundaberg East Levee			
Title:	Site	Photographs		
Project No:	30034151	Page:	23 of 74	

Photo 46: BH03 SPT11

Photo 47: B BH03 SPT12


Date Taken:	-	
Taken By:	СР	7-4
Checked By:	BY	
		Membe

Client:	DHLGPF	w	
Project:	Bundaberg East Levee		
Title:	Site Photog	raphs	
Project No:	30034151	Page:	24 of 74

Photo 48: BH03 SPT13

Photo 49: BH03 SPT14

Date Taken:	-		Client:	DHLGPP	w	
Taken By:	СР		Project:	Pundahara Fa	ot Lovos	
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	25 of 74

Photo 50: BH03 SPT15

Photo 51: BH03 SPT16

Date Taken:	-	
Taken By:	СР	
Checked By:	BY	
		Member of

Client:	DHLGP	PW	
Project:	Bundaberg Ea	ast Levee	
Title:	Site Photog	graphs	
Project No:	30034151	Page:	26 of 74

Photo 52: BH04 SPT01

Photo 53: BH04 SPT02

Date Taken:	-		Client:	DHLGPPW			
Taken By:	СР		Project:	Bundahara Ea	ot Lovos		
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		oject. Buildabeig Last Levee	
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs		
			Project No:	30034151	Page:	27 of 74	

Photo 54: BH04 SPT03

Photo 55: BH04 SPT04

Date Taken:	-		Client:	DHLGPPW		
Taken By:	СР		Project:	Bundahara Ea	est Lavas	
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	28 of 74

Photo 56: BH04 SPT05

Date **DHLGPPW** Client: Taken: Taken By: CP Project: **Bundaberg East Levee** Checked By BY Title: **Site Photographs** Project No: 30034151 Page: 29 of 74

Photo 57: BH04 U01

Photo 58: BH04 SPT06

Photo 59: BH04 SPT07

Date Taken:	-		Client:	DHLGPF	w	
Taken By:	СР		Project:	Rundahara Fa	et Lovoo	
Checked By:	BY	SMEC	Project.	oject: Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	30 of 74

Photo 60: BH04 SPT08

Date **DHLGPPW** Client: Taken: Taken By: CP Project: **Bundaberg East Levee** Checked By BY Title: **Site Photographs** Project No: 30034151 Page: 31 of 74

Photo 61: BH04 U02

Photo 62: BH04 SPT09

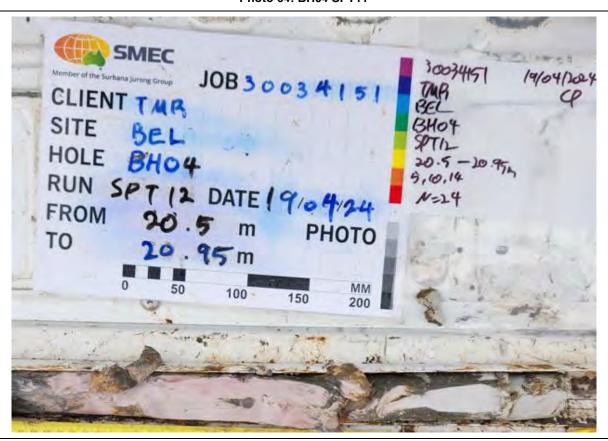


Photo 63: BH04 SPT10

Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Project:	Pundahara Faat Lavaa		
Checked By:	BY	SMEC	Project.	Bundaberg East Levee Site Photographs		
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	32 of 74

Photo 64: BH04 SPT11

Photo 65: BH04 SPT12

Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Project:	Bundaberg East Levee		
Checked By:	BY	SMEC				
		Member of the Surbana Jurong Group	Title:	Site Photographs		
			Project No:	30034151	Page:	33 of 74

Photo 66: BH04 SPT13

Photo 67: BH04 SPT14

Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Project:	Dundehora Feet Loves		
Checked By:	BY	SMEC	Project.	:: Bundaberg East Levee Site Photographs		
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	34 of 74

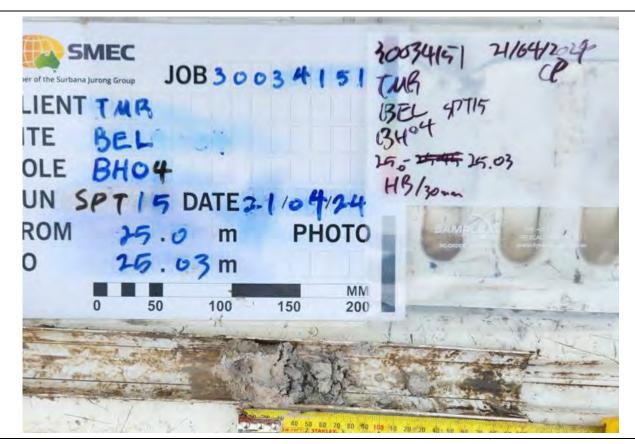


Photo 68: BH04 SPT15

Date Taken:	-
Taken By:	СР
Checked By:	BY

SMEC	
Member of the Surbana Jurong Grou	р

Client:	DHLGPPW					
Project:	Bunda	berg East Levee				
Title:	Site Photographs					
Project No:	30034151	Page:	35 of 74			

Photo 69: BH05 SPT01

Photo 70: BH05 SPT02

Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Project:	Dundahara Faat Lavaa		
Checked By:	BY	SMEC	Project.	Bundaberg East Levee Site Photographs		
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	36 of 74

Photo 71: BH05 SPT03

Photo 72: BH05 SPT04

Date Taken:	-	_	Client:	DHLGPF	PW	
Taken By:	СР		Project:	Dundahara Fast Layes		
Checked By:	BY	SMEC	Project.	Bundaberg East Levee Site Photographs		
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	37 of 74

Photo 73: BH05 SPT05

Photo 74: BH05 SPT06

Date Taken:	-
Taken By:	СР
Checked By:	BY

Client:	DHLGPPW					
Project:	Bundaberg East Levee					
Title:	Site F	Photographs				
Project No:	30034151	Page:	38 of 74			

Photo 75: BH05 SPT07

Date **DHLGPPW** Client: Taken: Taken By: CP **Bundaberg East Levee** Project: Checked By BY Title: **Site Photographs** Project No: 30034151 Page: 39 of 74

Photo 76: BH05 U01

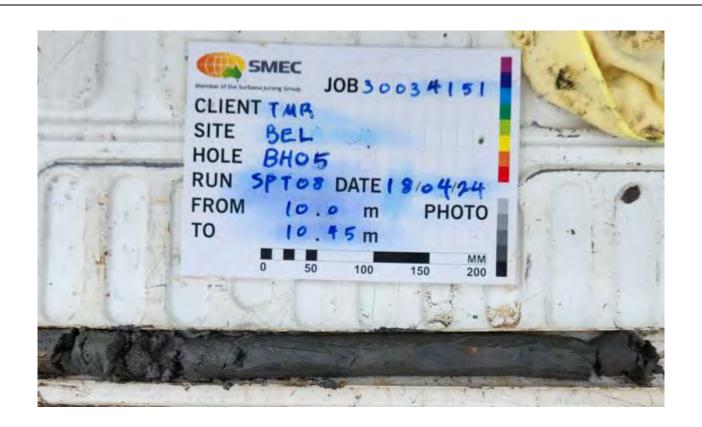


Photo 77: BH05 SPT08

Photo 78: BH05 SPT09

Date **DHLGPPW** Client: Taken: Taken By: CP Bundaberg East Levee Project: Checked By BY Title: **Site Photographs** Project No: 30034151 Page: 40 of 74

Photo 79: BH05 SPT10

Photo 80: BH05 U02

Date Taken:			Client:	DHLGF	PW		
Taken By:	СР		Drojoet:	Pundohora E	Dundohara Foot Laves		
Checked By:	BY	H.	SMEC	Bulluaberg E	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photographs			
			Project No:	30034151	Page:	41 of 74	

Photo 81: BH05 SPT11

Photo 82: BH05 SPT12

Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Project: Bundaberg East Lev		et Lovoo	
Checked By:	BY	SMEC	Froject.	Bundaberg East Levee Site Photographs		
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	42 of 74

Photo 83: BH05 SPT1013

Photo 84: BH05 SPT14

Date Taken:	-		Client:	DHLGP	PW	
Taken By:	СР		Project: Bundaberg East Levee			
Checked By:	BY	SMEC	Project.	Bundaberg East Levee Site Photographs		
		Member of the Surbana Jurong Group	Title:			
			Project No:	30034151	Page:	43 of 74

Photo 85: BH05 SPT15

Photo 86: BH05 SPT16

Date	-	
Taken:		
Taken By:	СР	
Checked By:	BY	SM
		Member of the Surbana Juro

1EC ong Group

Client:	DHLGPPW			
Project:	Bundaberg Ea	st Levee		
Title:	Site Photographs			
Project No:	30034151	Page:	44 of 74	

Photo 87: BH06 SPT01

Photo 88: BH06 SPT02

Date Taken:	-	
Taken By:	СР	
Checked By:	BY	
		Member of the Surl

SMEC
Member of the Surbana Jurong Group

Client:	DHLGPPW		
Project:	Bundaberg East Levee		
Title:	Site Photographs		
Project No:	30034151	Page:	45 of 74

Photo 89: BH06 SPT03

Photo 90: BH06 SPT04

Date Taken:	-	
Taken By:	СР	
Checked By:	ВҮ	
		Member of the S

Client:	DHLGPPW			
Project:	Bundaberg East Levee			
Title:	Site Photographs			
Project No:	30034151	Page:	46 of 74	

Photo 91: BH06 SPT06

Photo 92: BH06 SPT06

Taken:		
Taken By:	СР	
Checked By:	BY	SMEC
		Member of the Surbana Jurong Group

Date

Client:	DHLGPPW			
Project:	Bundaberg East Levee			
Title:	Site Photographs			
Project No:	30034151	Page:	47 of 74	

Photo 93: BH06 SPT07

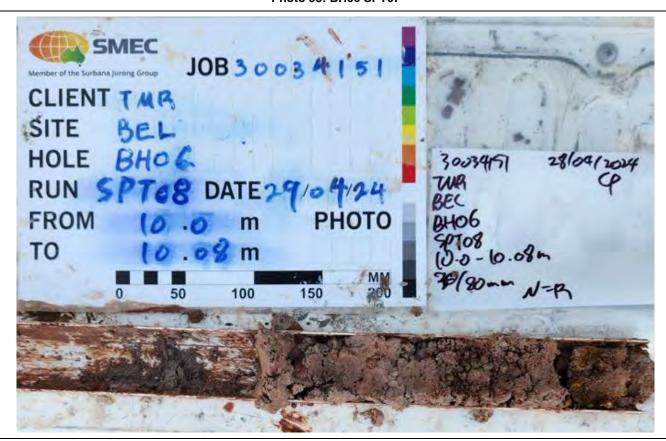


Photo 94: BH06 SPT08

Date Taken:	-		Client:	D	HLGPPW					
Taken By:	n By: CP			: Bundaberg East Levee				Don debene Feet Leves		
Checked By:	BY	SMEC	Project:	Bundar	berg East Levee					
		Member of the Surbana Jurong Group	Title:	Site	Photographs					
			Project No:	30034151	Page:	48 of 74				

Photo 95: BH06 SPT09

Photo 96: BH06 SPT10

Taken:	-	
Taken By:	СР	
Checked By:	BY	SMEC
		Member of the Surbana Jurong Group

Date

Client:	DHLO	SPPW .
Project:	Bundaberg	East Levee
Title:	Site Pho	tographs
Project No:	30034151	Page: 49 of 74

Photo 97: BH08 SPT01



Photo 98: BH08 SPT03

Date Taken:	-		Client:	DHLGPF	w	
Taken By:	СР		Project:	Bundahara Fa	et Lovoo	
Checked By:	BY	SMEC	Project.	oject: Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	50 of 74

Photo 99: BH08 SPT4

Photo 100: BH08 SPT05

Date Taken:	-		Client:	DHLGPF	w	
Taken By:	СР		Project:	Pundahara Fa	ot Lovos	
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	51 of 74

Photo 101: BH08 U01

Photo 102: BH08 SPT06

Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Project:	Bundahara Ea	ot Lovos	
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	52 of 74

Photo 103: BH08 SPT07

Photo 104: BH08 U02

Date Taken:	-		Client:	DHLGP	PW	
Taken By:	СР		Project:	Rundahara E	ast Lavas	
Checked By:	BY	SMEC	Froject.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photo	graphs	
			Project No:	30034151	Page:	53 of 74

Photo 105: BH08 SPT08

Date **DHLGPPW** Client: Taken: Taken By: CP Project: **Bundaberg East Levee** Checked By BY Title: **Site Photographs** Project No: 30034151 Page: 54 of 74

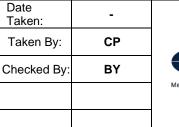

Photo 106: BH08 SPT09

Photo 107: BH08 SPT10

Photo 108: BH08 SPT11

Client:	DHLGPF	w	
Project:	Bundaberg Ea	st Levee	
Title:	Site Photog	raphs	
Project No:	30034151	Page:	55 of 74

Photo 109: BH08 SPT12

Photo 110: BH08 SPT13

Date Taken:	-		Client:	DHLGPF	w	
Taken By:	СР		Droinet:	Bundahara Ea	ot Lovos	
Checked By:	ВҮ	SMEC	Project:	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	56 of 74

Photo 111: BH08 SPT14

Photo 112: BH08 SPT15

Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Project:	Bundahara Ea	ot Lovos	
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	57 of 74

Photo 113: BH08 SPT16

Photo 114: BH08 SPT17

Date Taken:			Client:	DHLGF	PW	
Taken By:	СР		Drojoet:	oject: Bundaberg East Levee		
Checked By:	BY	SMEC	Project.			
		Member of the Surbana Jurong Group	Title:	Site Photo	graphs	
			Project No:	30034151	Page:	58 of 74

Photo 115: BH08 SPT18

Photo 116: BH08 SPT19

Date Taken:	-		Client:	DHLGPF	w	
Taken By:	СР		Project:	Rundahara Fa	et Lovoo	
Checked By:	BY	SMEC	Project.	Project: Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	59 of 74

Photo 117: BH09 SPT01

Photo 118: BH09 SPT02

Date Taken:	-		Client:	DHLGPF	w	
Taken By:	СР		Project:	Rundahara Fa	et Lovoo	
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	60 of 74

Photo 119: BH09 SPT03

Photo 120: BH09 SPT04

Date Taken:	-		Client:	DHLGPF	w	
Taken By:	СР		Project:	:: Bundaberg East Levee		
Checked By:	BY	SMEC	Project.			
		Member of the Surbana Jurong Group	Title:	Site Photographs		
			Project No:	30034151	Page:	61 of 74

Photo 121: BH09 SPT05

Photo 122: BH09 SPT06

Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Project:	Bundahara Ea	ot Lovos	
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	62 of 74

Photo 123: BH09 SPT07

Photo 124: BH09 SPT08

Date Taken:	-		Client:	DHLGPI	PW	
Taken By:	СР		Project:	Bundaberg Ea	et Lovoo	
Checked By:	BY	SMEC	Froject.	Bulluaberg Ea	ist Levee	
		Member of the Surbana Jurong Group	Title:	Site Photog	ıraphs	
			Project No:	30034151	Page:	63 of 74

Photo 125: BH09 SPT09

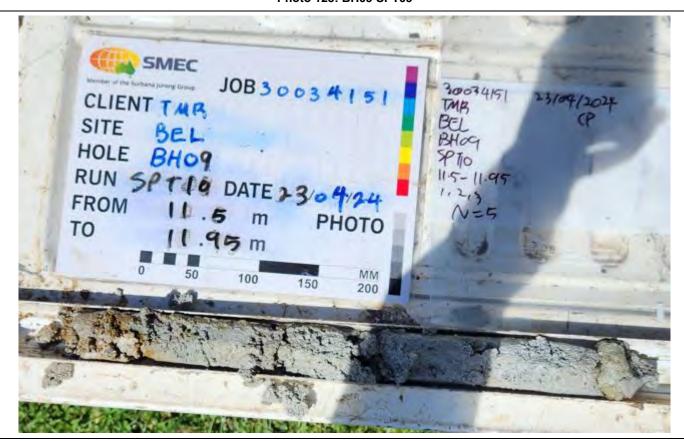


Photo 126: BH09 SPT10

Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Project:	Bundahara Ea	ot Lovos	
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photog	raphs	
			Project No:	30034151	Page:	64 of 74

Photo 127: BH09 SPT11

Photo 128: BH09 SPT12

Date Taken:	-		Client:	DHLG	PPW	
Taken By:	СР		Project: Bundaberg East Levee			
Checked By:	BY	SMEC	rioject.	bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Phot	ographs	
			Project No:	30034151	Page:	65 of 74

Photo 129: BH09 SPT13

Photo 130: BH09 SPT14

Date Taken:	-		Client:	DHL	GPPW	
Taken By:	СР		Drojoot:	ect: Bundaberg East Levee		
Checked By:	BY	SMEC	Project:			
		Member of the Surbana Jurong Group	Title:	Site Photographs		
			Project No:	30034151	Page:	66 of 74

Photo 131: BH09 SPT15

Photo 2: BH02 S	atur

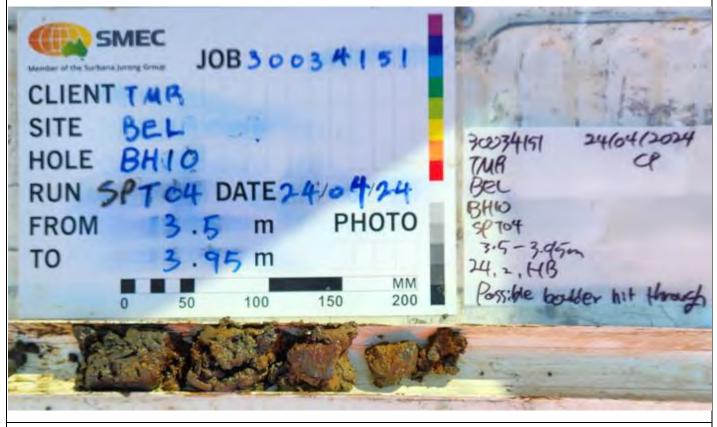
Date Taken:	-
Taken By:	СР
Checked By:	BY

Client:	D	HLGPPW		
Project:	Bundab	perg East Levee		
Title:	Site Photographs			
Project No:	30034151	Page: 67 of 74		

Photo 132: BH10 SPT01

Photo 133: BH10 SPT02

Taken:	-
Taken By:	СР
Checked By:	BY


Data

Client:		HLGPPW			
Project:	Bundaberg East Levee				
Title:	Site Photographs				
Project No:	30034151	Page:	68 of 74		

Photo 134: BH10 SPT03

Photo 135: BH10 SPT04

Date Taken:

Taken By: CP

Checked By: BY

Client:	DHLGPF	W		
Project:	Bundaberg East Levee			
Title:				
Project No:	30034151	Page:	69 of 74	

Photo 136: BH10 SPT05

Photo 137: BH10 SPT06 T_{α}

Taken: Taken By: CP Checked By BY

Date

Client:	DHLGPPW		
Project:	Bundaberg East Levee		
Title:	Site Photographs		
Project No:	30034151	Page:	70 of 74

Photo 138: BH10 SPT07

Photo 139: BH10 SPT08

Date Taken:	-	SMEC	Client:	DHLGPF	w	
Taken By:	СР		Project:	Bundaberg East Levee		
Checked By:	BY					
		Member of the Surbana Jurong Group	Title:	e: Site Photograp		
			Project No:	30034151	Page:	71 of 74

Photo 140: BH10 SPT09

Photo 141: BH10 SPT10

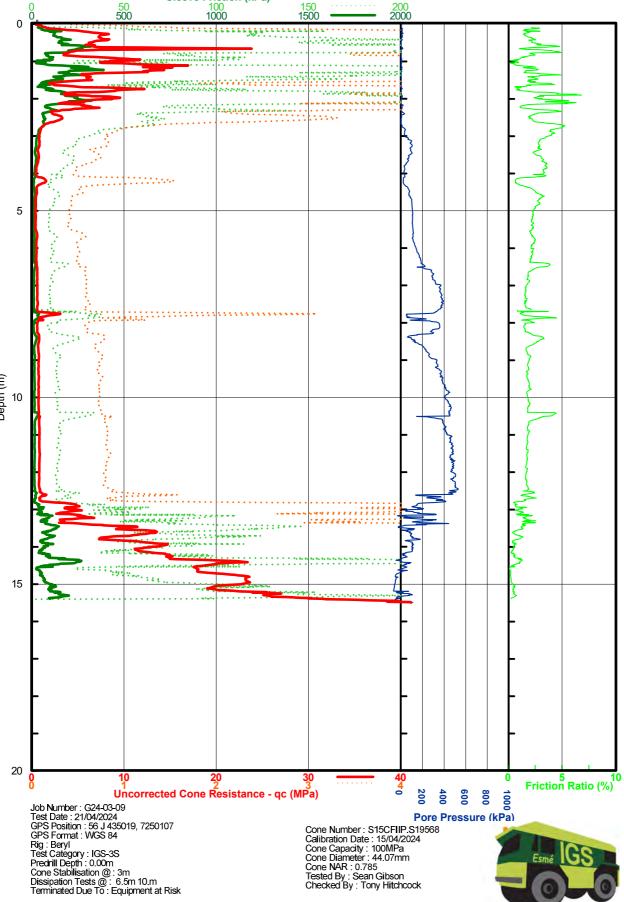
Date Taken:	-		Client:	DHLGPF	PW .	
Taken By:	СР		Project:	Pundahara Fast Layes		
Checked By:	BY	SMEC	Project.	Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photographs		
			Project No:	30034151	Page:	72 of 74

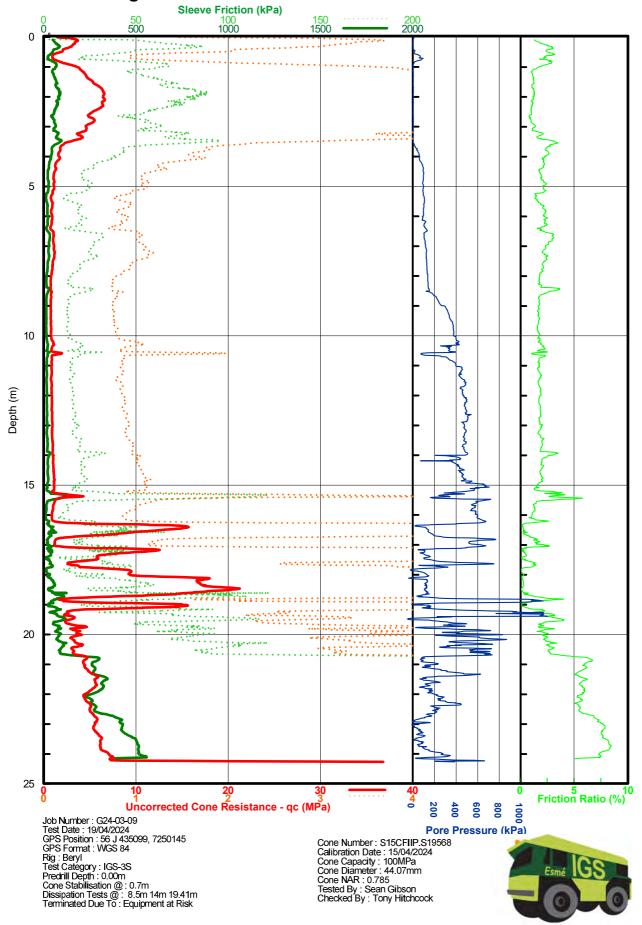
Photo 142: BH10 SPT11

Photo 143: BH10 SPT13

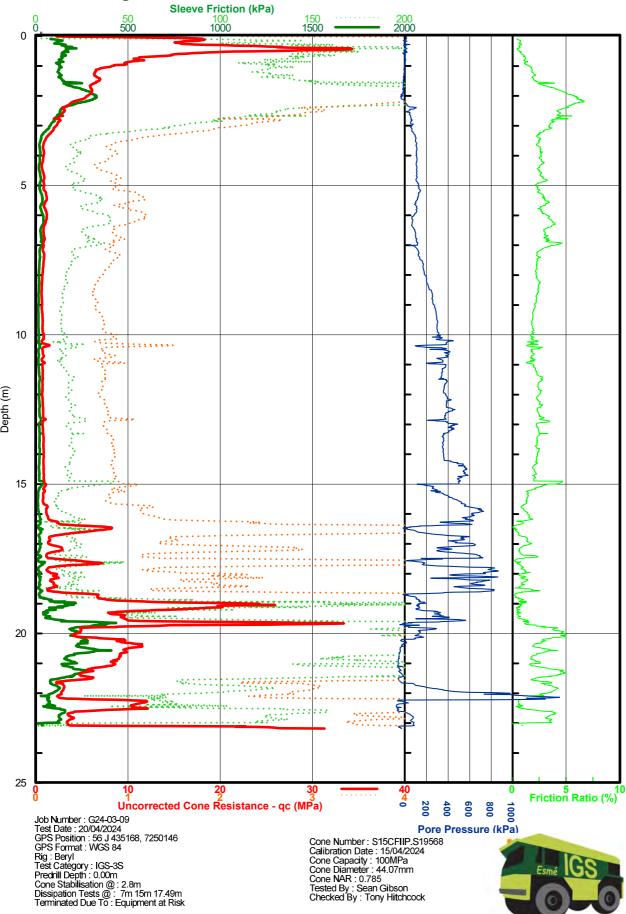
Date Taken:	-		Client:	DHLGPF	PW	
Taken By:	СР		Drojoet:	Dundehern Feet Levee		
Checked By:	BY			Bundaberg East Levee		
		Member of the Surbana Jurong Group	Title:	Site Photographs		
			Project No:	30034151	Page:	73 of 74

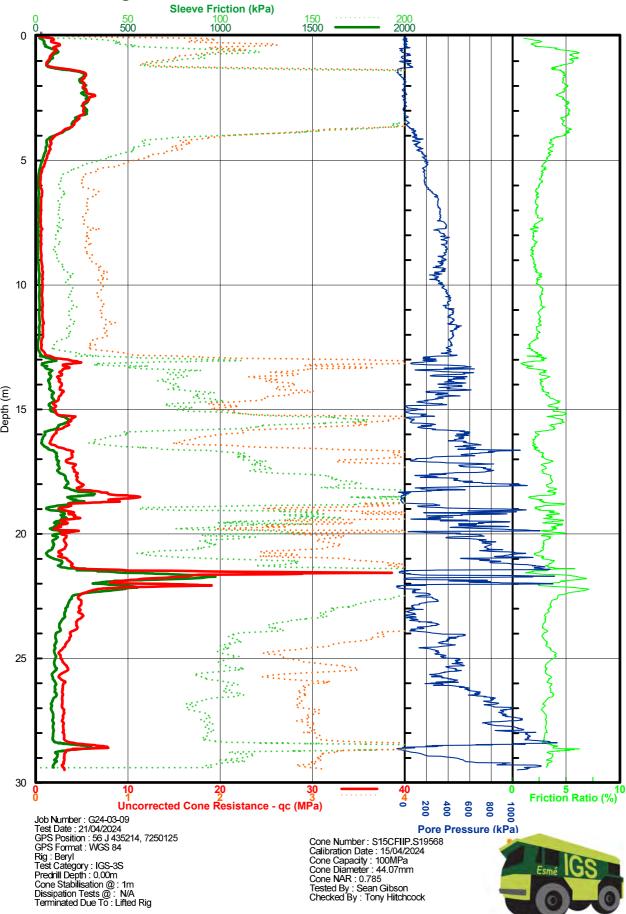
Photo 144: BH10 SPT14

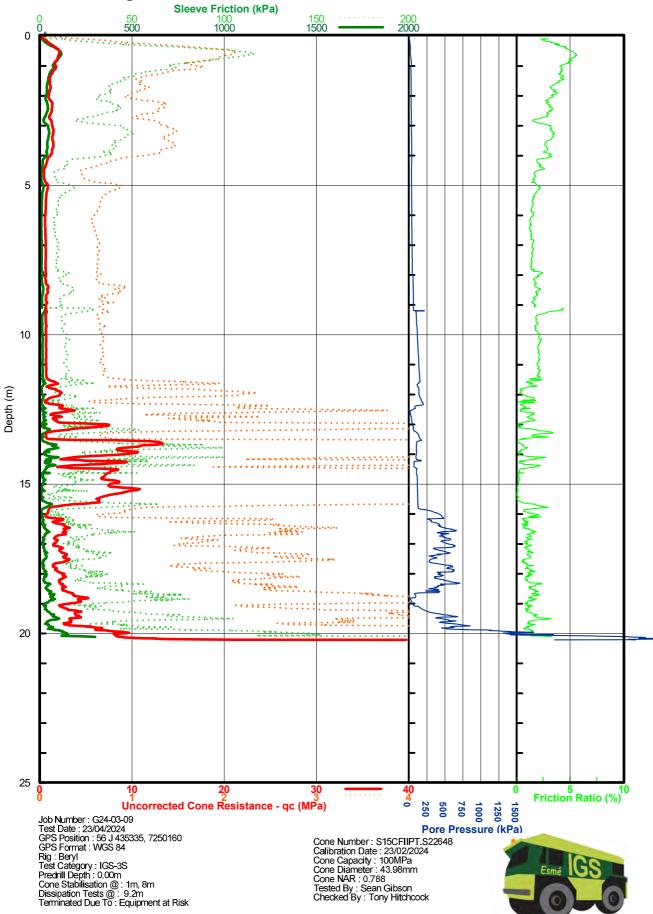

Date Taken:	-
Taken By:	СР
Checked By:	BY

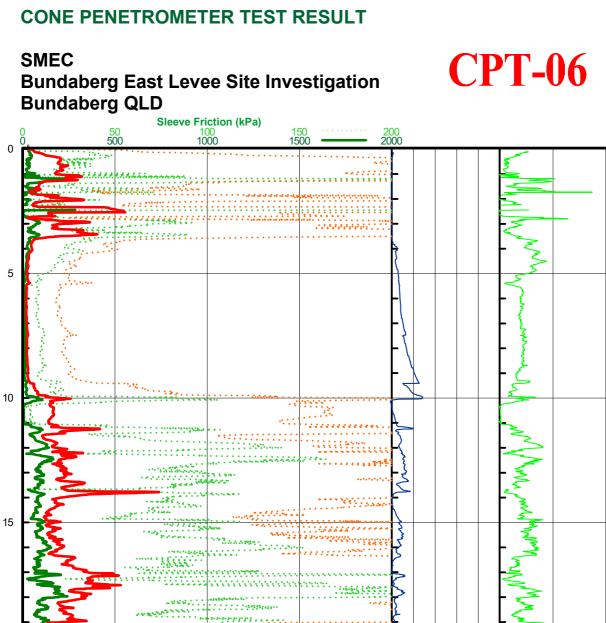

Client:	DHLGPPW Bundaberg East Levee Site Photographs		
Project:			
Title:			
Project No:	30034151	Page:	74 of 74

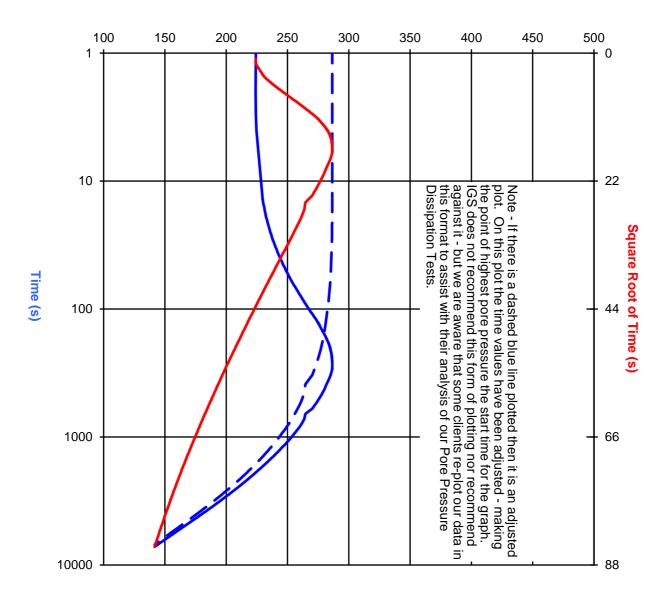
Appendix D Piezocone Penetration Test











25 30 Friction Ratio (%) 800 600 400 Uncorrected Cone Resistance - qc (MPa) Job Number: G24-03-09
Test Date: 22/04/2024
GPS Position: 56 J435818, 7250601
GPS Format: WGS 84
Rig: Beryl
Test Category: IGS-3S
Predrill Depth: 0.00m
Cone Stabilisation @: 2.3m
Dissipation Tests @: 9.5m
Terminated Due To: Equipment at Risk Pore Pressure (kPa) Cone Number: S15CFIIPT.S22648
Calibration Date: 23/02/2024
Cone Capacity: 100MPa
Cone Diameter: 43.98mm
Cone NAR: 0.788
Tested By: Sean Gibson
Checked By: Tony Hitchcock

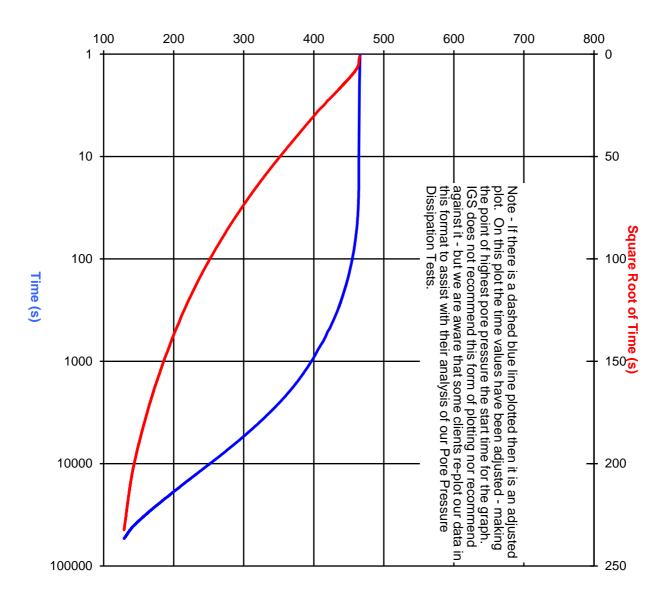
Appendix E **Pore Pressure Dissipation Test**

SMEC Bundaberg East Levee Site Investigation Bundaberg QLD

Pore Pressure (kPa)

Tested By: Sean Gibson Test Duration: 2 Hours, 0 Minutes Test Date: 21/04/2024

Job No: G24-03-09 Cone: S15CFIIP.S19568



CPT-01

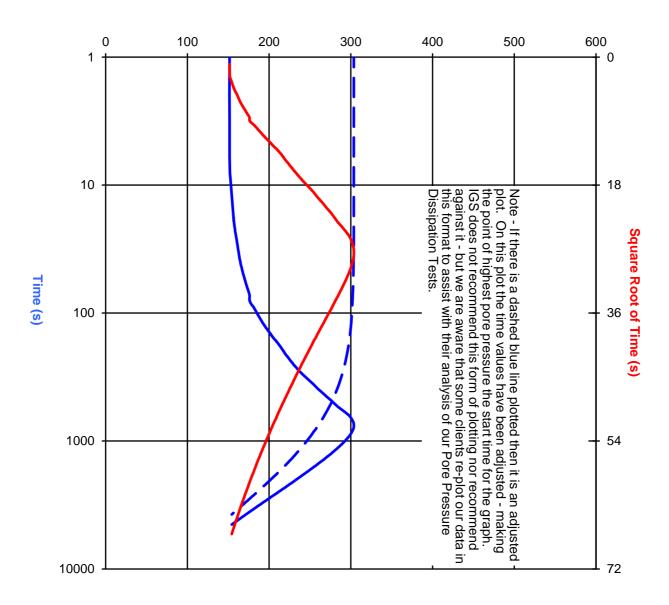
Depth: 6.5m

SMEC Bundaberg East Levee Site Investigation Bundaberg QLD

Pore Pressure (kPa)

Tested By: Sean Gibson Test Duration: 15 Hours, 0 Minutes Test Date: 21/04/2024

Job No: G24-03-09 Cone: S15CFIIP.S19568



CPT-01

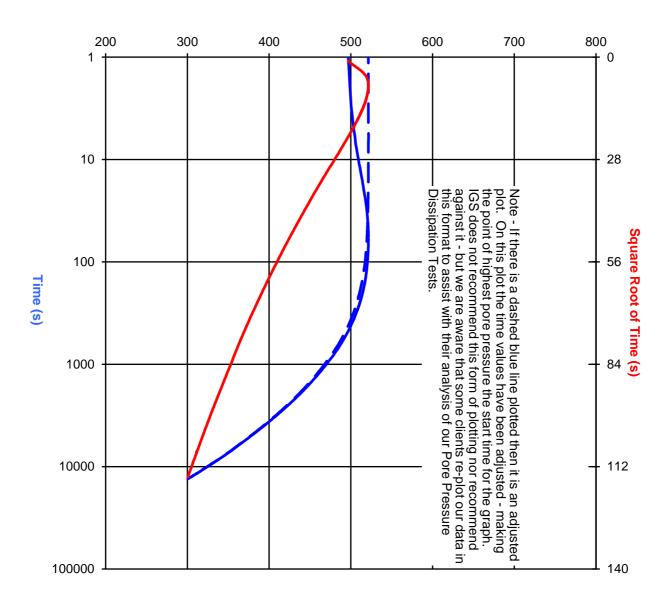
Depth: 10.5m

SMEC Bundaberg East Levee Site Investigation Bundaberg QLD

Pore Pressure (kPa)

Tested By: Sean Gibson Test Duration: 1 Hours, 15 Minutes Test Date: 19/04/2024

Job No: G24-03-09 Cone: S15CFIIP.S19568



CPT-02

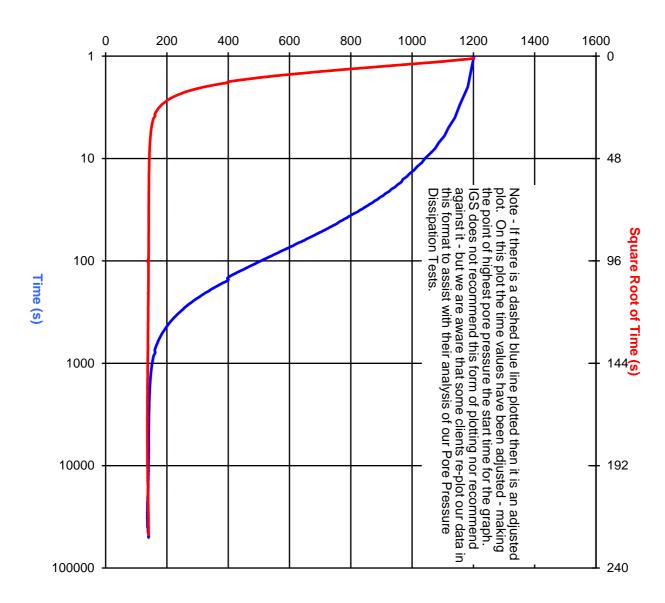
Depth: 8.5m

SMEC Bundaberg East Levee Site Investigation Bundaberg QLD

Pore Pressure (kPa)

Tested By: Sean Gibson Test Duration: 3 Hours, 40 Minutes Test Date: 19/04/2024

Job No: G24-03-09 Cone: S15CFIIP.S19568



CPT-02

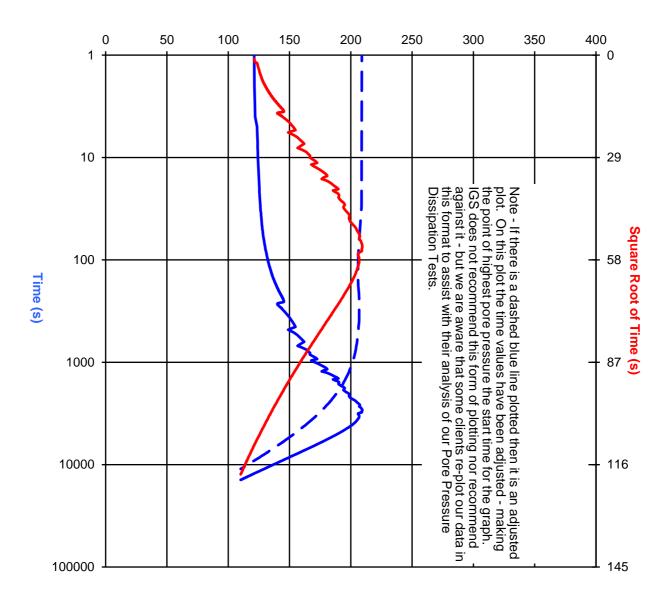
Depth: 14m

SMEC Bundaberg East Levee Site Investigation Bundaberg QLD

Pore Pressure (kPa)

Tested By: Sean Gibson Test Duration: 14 Hours, 0 Minutes Test Date: 19/04/2024

Job No: G24-03-09 Cone: S15CFIIP.S19568



CPT-02

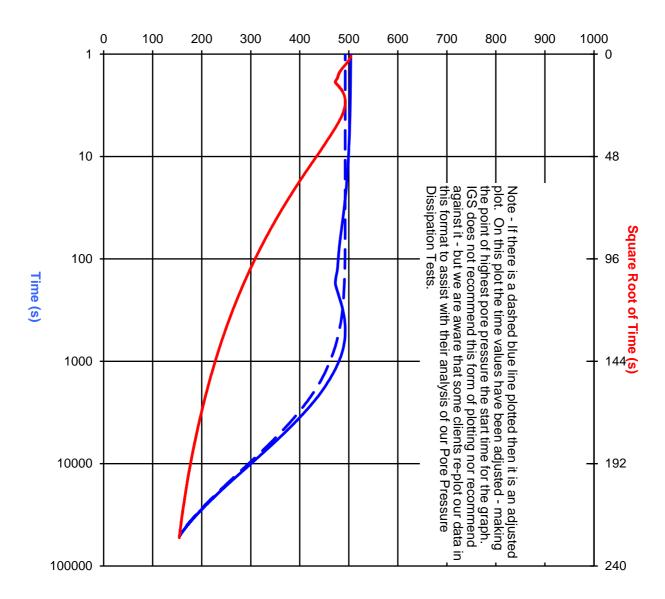
Depth: 19.41m

SMEC Bundaberg East Levee Site Investigation Bundaberg QLD

Pore Pressure (kPa)

Tested By: Sean Gibson Test Duration: 3 Hours, 55 Minutes Test Date: 20/04/2024

Job No: G24-03-09 Cone: S15CFIIP.S19568



CPT-03

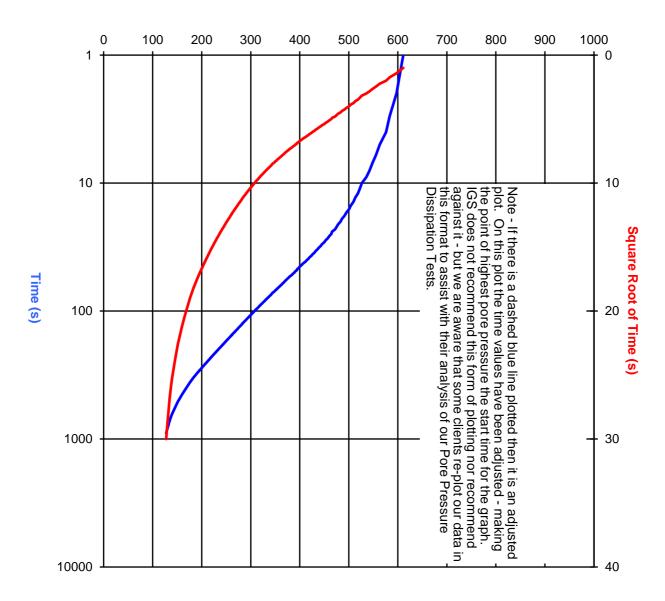
Depth: 7m

SMEC Bundaberg East Levee Site Investigation Bundaberg QLD

Pore Pressure (kPa)

Tested By: Sean Gibson Test Duration: 14 Hours, 17 Minutes Test Date: 20/04/2024

Job No: G24-03-09 Cone: S15CFIIP.S19568



CPT-03

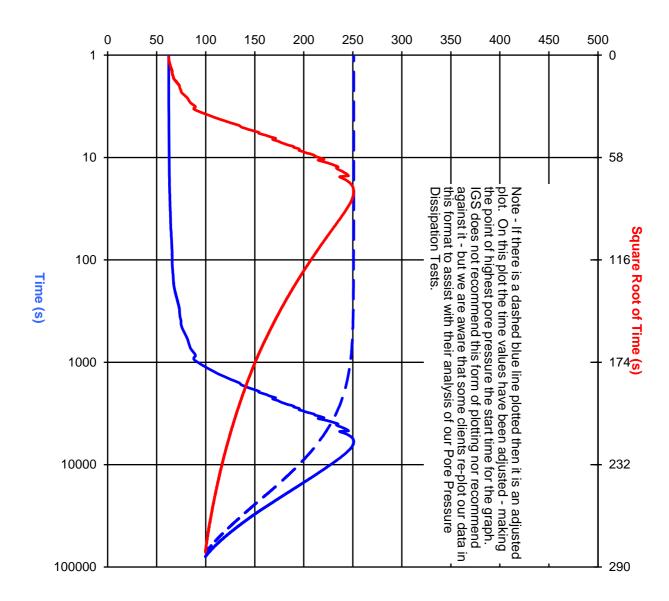
Depth: 15m

SMEC Bundaberg East Levee Site Investigation Bundaberg QLD

Pore Pressure (kPa)

Tested By: Sean Gibson Test Duration: 0 Hours, 15 Minutes Test Date: 20/04/2024

Job No: G24-03-09 Cone: S15CFIIP.S19568



CPT-03

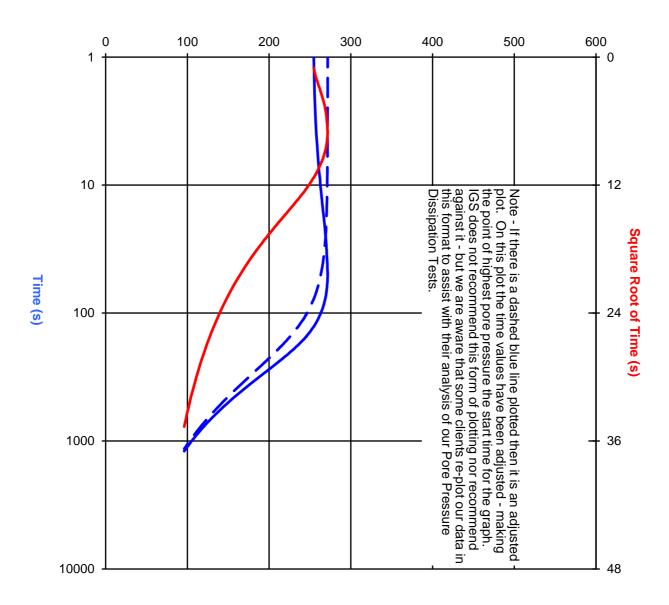
Depth: 17.49m

SMEC Bundaberg East Levee Site Investigation Bundaberg QLD

Pore Pressure (kPa)

Tested By: Sean Gibson Test Duration: 22 Hours, 1 Minutes Test Date: 23/04/2024

Job No: G24-03-09 Cone: S15CFIIPT.S22648



CPT-05

Depth: 9.2m

SMEC Bundaberg East Levee Site Investigation Bundaberg QLD

Pore Pressure (kPa)

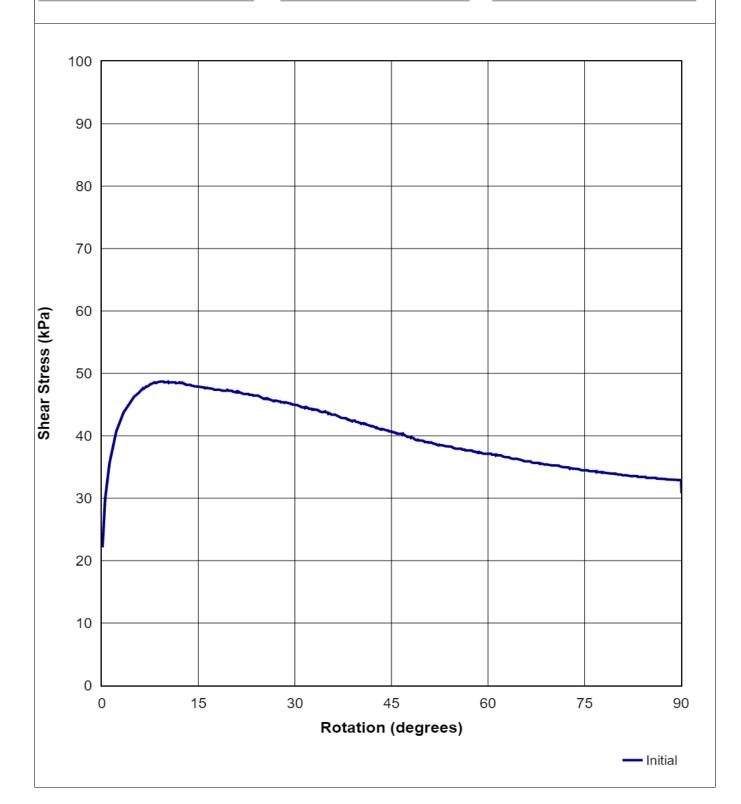
Tested By: Sean Gibson Test Duration: 0 Hours, 20 Minutes Test Date: 22/04/2024

Job No: G24-03-09 Cone: S15CFIIPT.S22648

CPT-06

Depth: 9.5m

Appendix F Vane Shear Test

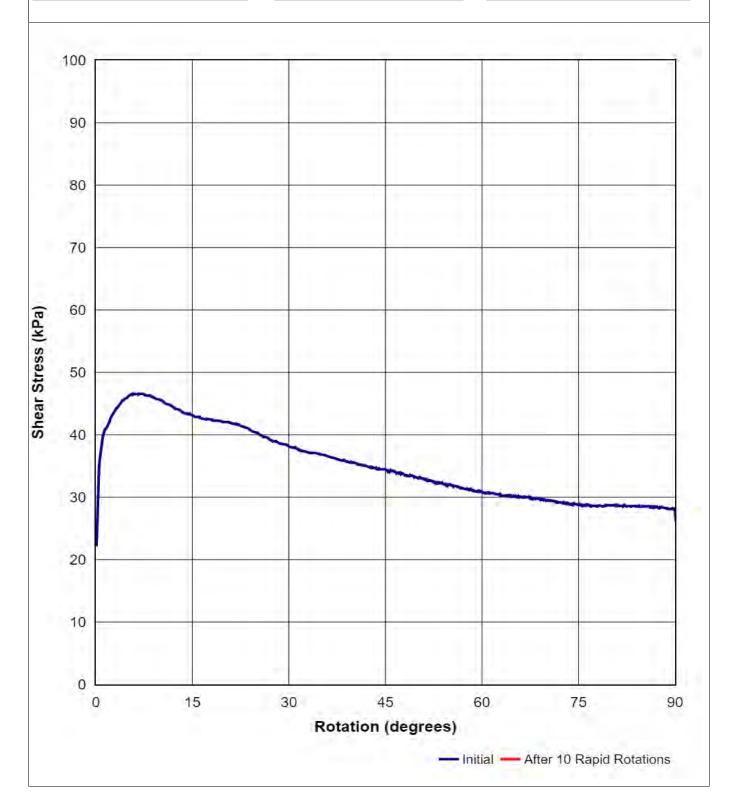

VANE SHEAR TEST

CPT-01 (3.5 m)

CLIENT SMEC
PROJECT Bundaberg East Levee
LOCATION Bundaberg QLD
JOB NUMBER G24-03-09
GPS POSITION 56 J 435018, 7250106
GPS FORMAT WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	3.50
TEST DATE	20/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

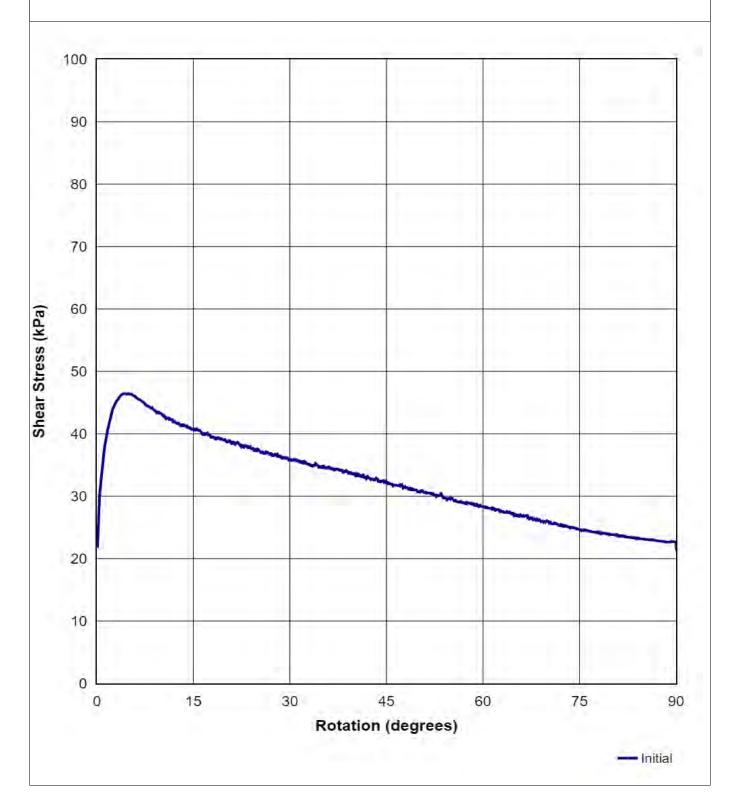

VANE SHEAR TEST

CPT-01 (5 m)

CLIENT SMEC
PROJECT Bundaberg East Levee
LOCATION Bundaberg QLD
JOB NUMBER G24-03-09
GPS POSITION 56 J 435018, 7250106
GPS FORMAT WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	5.00
TEST DATE	20/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

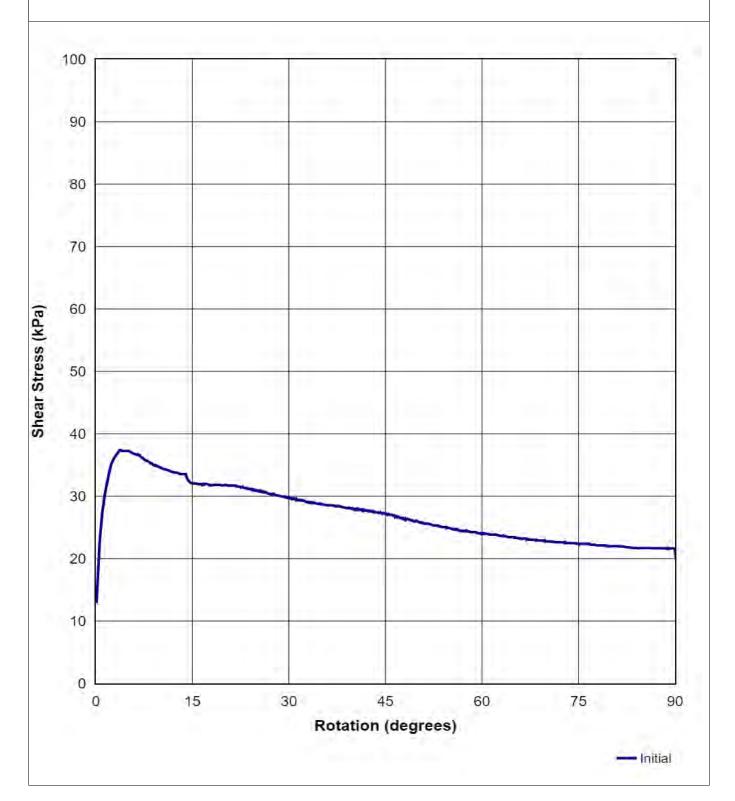

VANE SHEAR TEST

CPT-01 (7 m)

CLIENT	SMEC
PROJECT	Bundaberg East Levee
LOCATION	Bundaberg QLD
JOB NUMBER	G24-03-09
GPS POSITION	56 J 435018, 7250106
GPS FORMAT	WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	7.00
TEST DATE	20/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

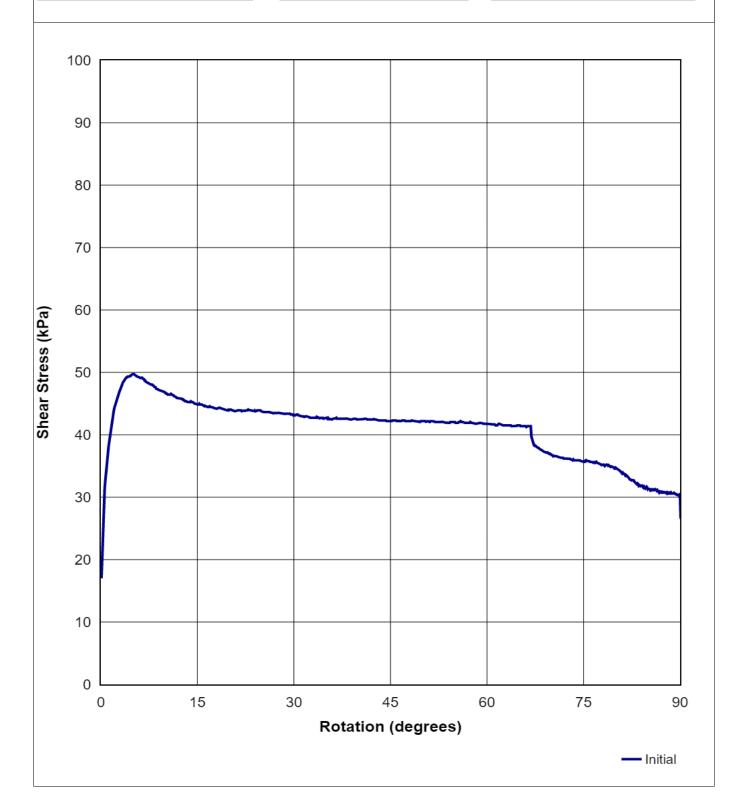


CPT-01 (9 m)

CLIENT SMEC
PROJECT Bundaberg East Levee
LOCATION Bundaberg QLD
JOB NUMBER G24-03-09
GPS POSITION 56 J 435018, 7250106
GPS FORMAT WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

9.00
20/04/2024
6
Sean Gibson
Mark Chapman


VANE SHEAR TEST

CPT-01 (11 m)

CLIENT	SMEC
PROJECT	Bundaberg East Levee
LOCATION	Bundaberg QLD
JOB NUMBER	G24-03-09
GPS POSITION	56 J 435018, 7250106
GPS FORMAT	WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	11.00
TEST DATE	20/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

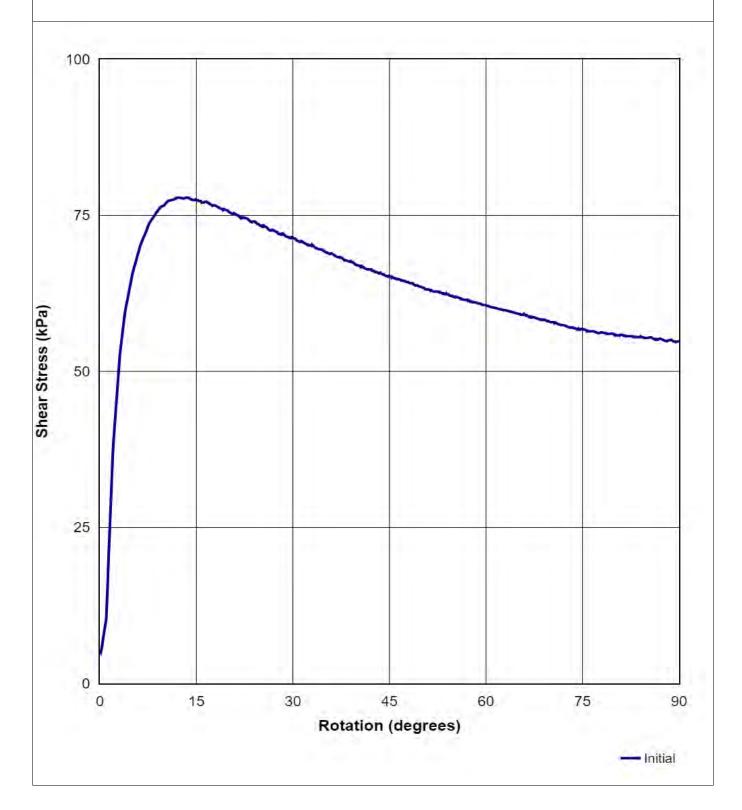
VANE SHEAR TEST

CPT-01 (12 m)

CLIENT	SMEC
PROJECT	Bundaberg East Levee
LOCATION	Bundaberg QLD
JOB NUMBER	G24-03-09
GPS POSITION	56 J 435018, 7250106
GPS FORMAT	WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	12.00
TEST DATE	20/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

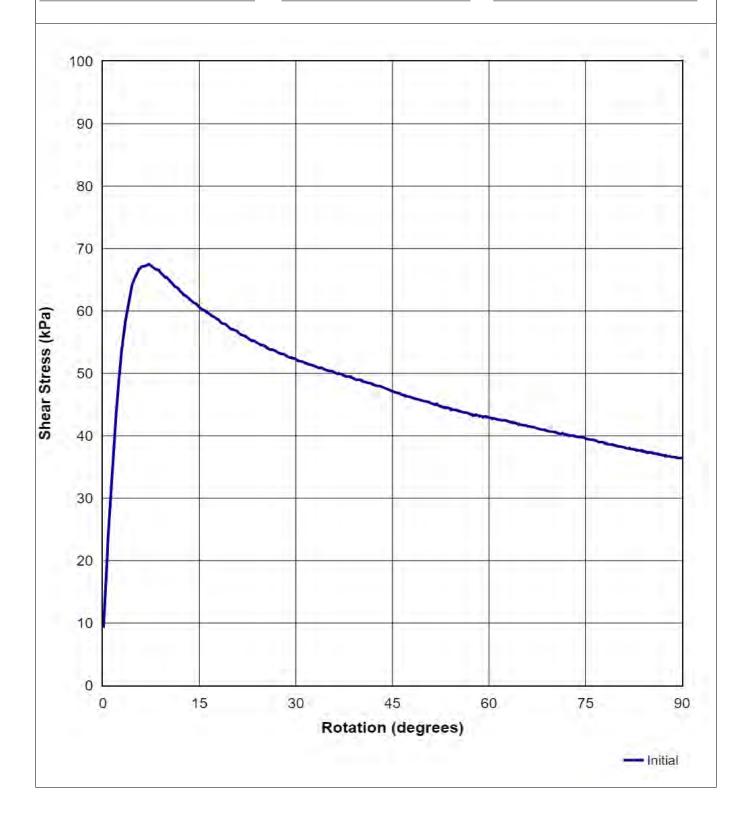

VANE SHEAR TEST

CPT-02 (5.0 m)

CLIENT	SMEC
PROJECT	Bundaberg East Levee
LOCATION	Bundaberg QLD
JOB NUMBER	G24-03-09
GPS POSITION	56 J 435098, 7250144
GPS FORMAT	WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	5.00
TEST DATE	20/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

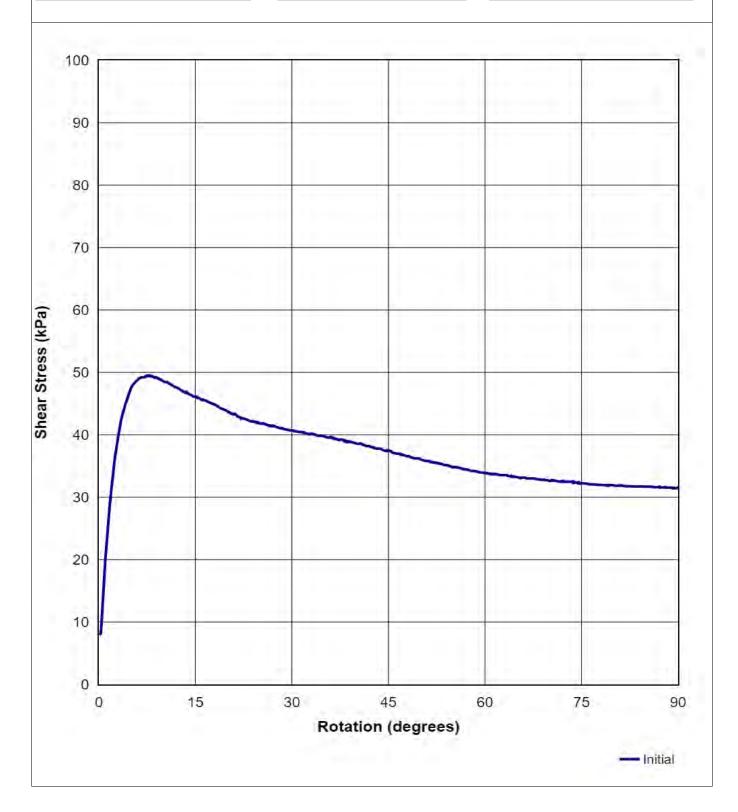

VANE SHEAR TEST

CPT-02 (7.0 m)

CLIENT SMEC
PROJECT Bundaberg East Levee
LOCATION Bundaberg QLD
JOB NUMBER G24-03-09
GPS POSITION 56 J 435098, 7250144
GPS FORMAT WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	7.00
TEST DATE	20/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

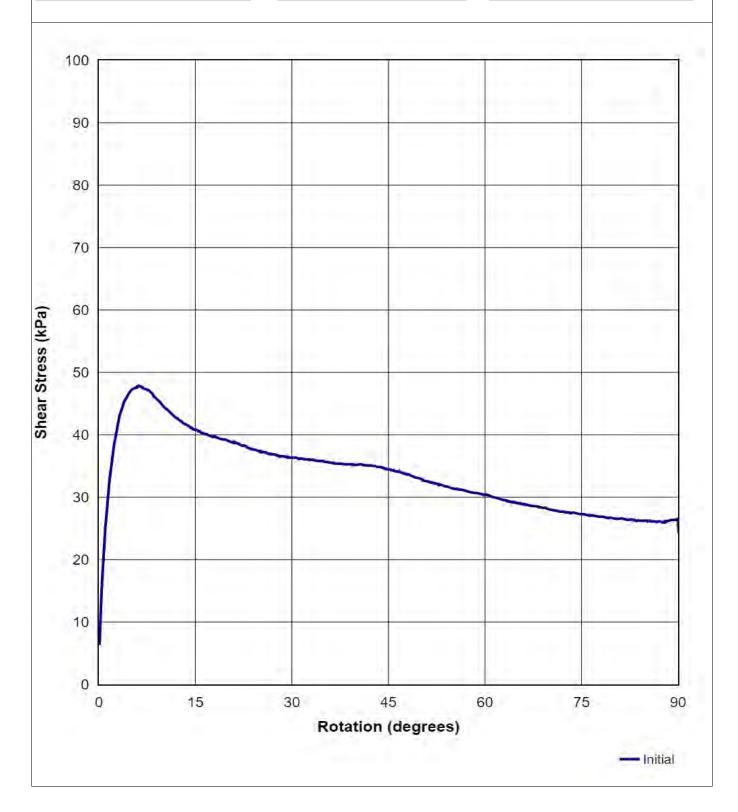


CPT-02 (8.5 m)

CLIENT	SMEC
PROJECT	Bundaberg East Levee
LOCATION	Bundaberg QLD
JOB NUMBER	G24-03-09
GPS POSITION	56 J 435098, 7250144
GPS FORMAT	WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	8.50
TEST DATE	20/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

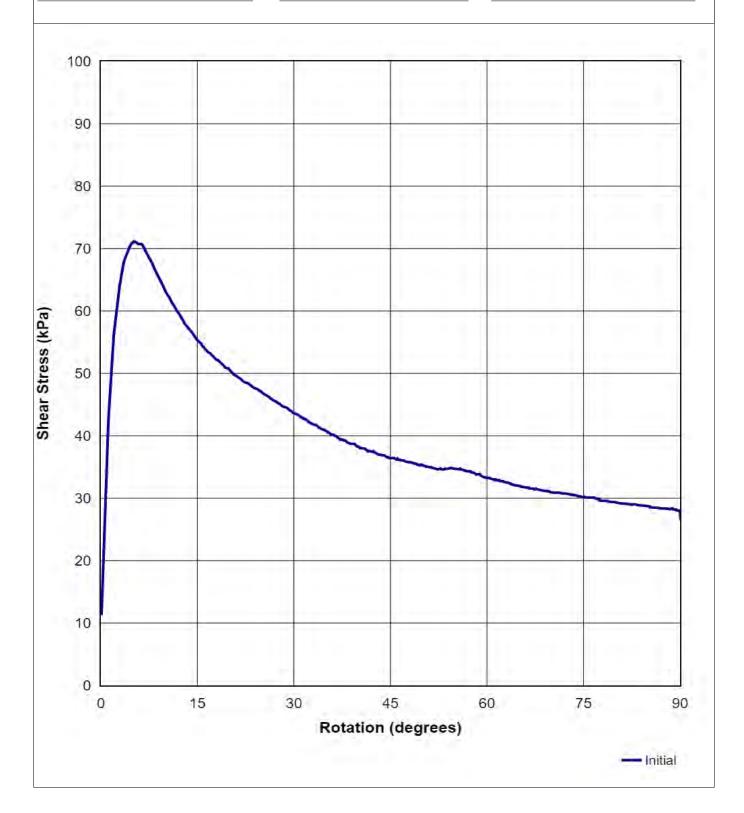


CPT-02 (11.2 m)

CLIENT	SMEC
PROJECT	Bundaberg East Levee
LOCATION	Bundaberg QLD
JOB NUMBER	G24-03-09
GPS POSITION	56 J 435098, 7250144
GPS FORMAT	WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	11.20
TEST DATE	20/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

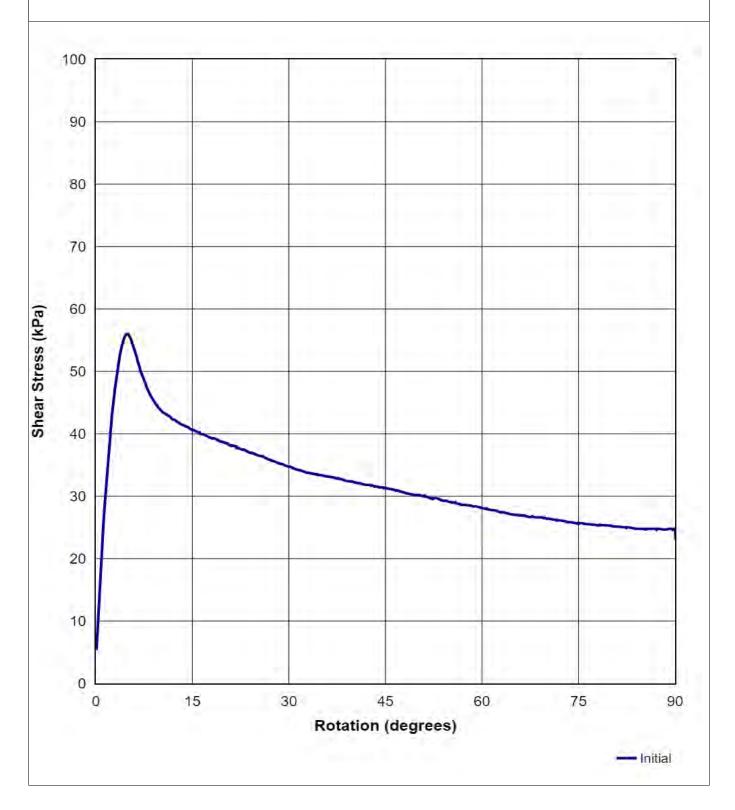

VANE SHEAR TEST

CPT-02 (13 m)

CLIENT SMEC
PROJECT Bundaberg East Levee
LOCATION Bundaberg QLD
JOB NUMBER G24-03-09
GPS POSITION 56 J 435098, 7250144
GPS FORMAT WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	13.00
TEST DATE	20/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

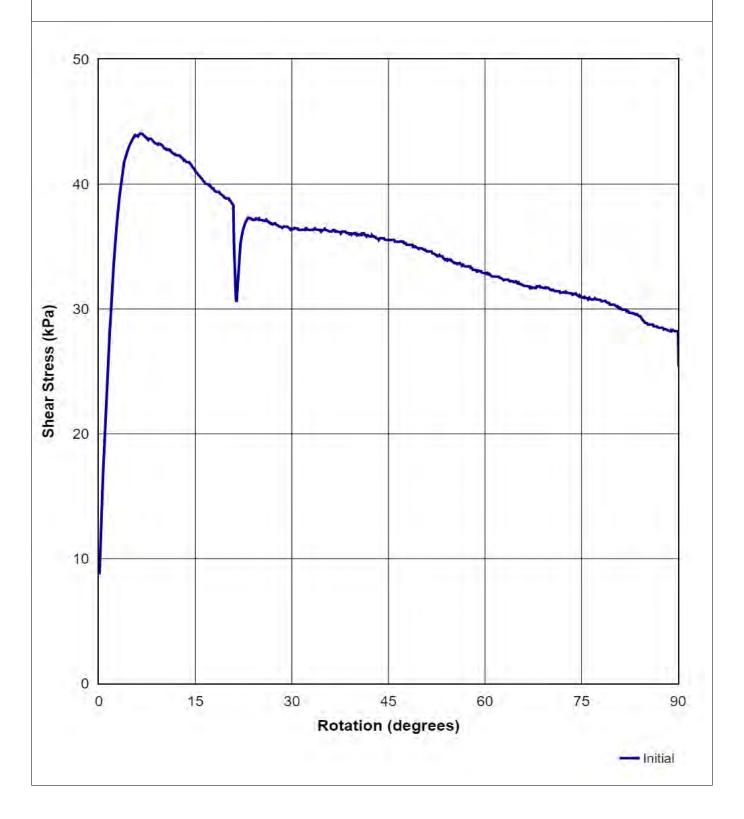

VANE SHEAR TEST

CPT-02 (14.5 m)

CLIENT	SMEC
PROJECT	Bundaberg East Levee
LOCATION	Bundaberg QLD
JOB NUMBER	G24-03-09
GPS POSITION	56 J 435098, 7250144
GPS FORMAT	WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	14.50
TEST DATE	20/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

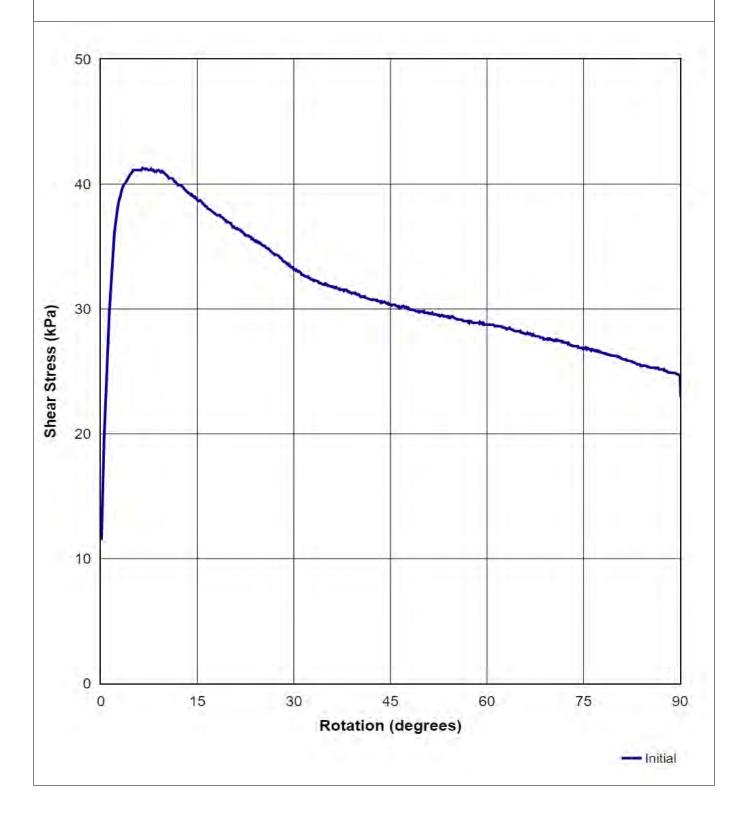

VANE SHEAR TEST

CPT-05 (4.5 m)

CLIENT	SMEC
PROJECT	Bundaberg East Levee
LOCATION	Bundaberg QLD
JOB NUMBER	G24-03-09
GPS POSITION	56 J 435334, 7250160
GPS FORMAT	WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	4.50
TEST DATE	24/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

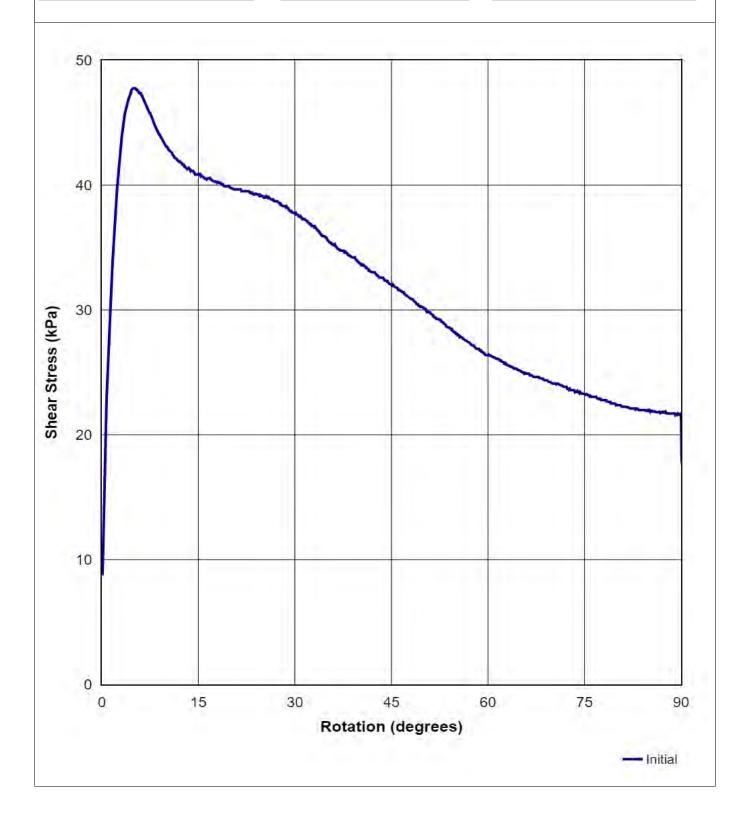


CPT-05 (6.0 m)

CLIENT SMEC
PROJECT Bundaberg East Levee
LOCATION Bundaberg QLD
JOB NUMBER G24-03-09
GPS POSITION 56 J 435334, 7250160
GPS FORMAT WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

6.00
24/04/2024
6
Sean Gibson
Mark Chapman

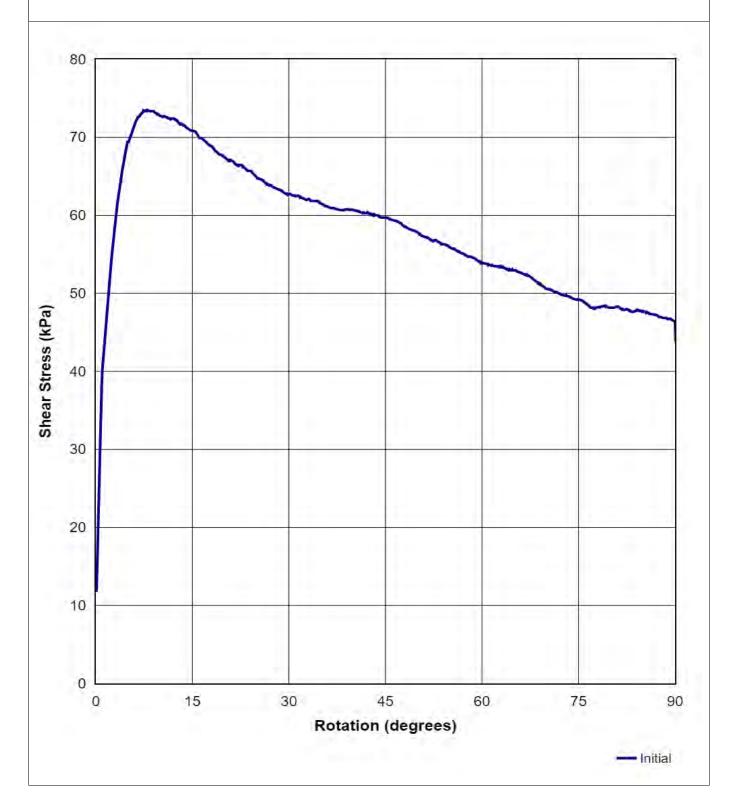


CPT-05 (7.5 m)

CLIENT	SMEC
PROJECT	Bundaberg East Levee
LOCATION	Bundaberg QLD
JOB NUMBER	G24-03-09
GPS POSITION	56 J 435334, 7250160
GPS FORMAT	WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	7.50
TEST DATE	24/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

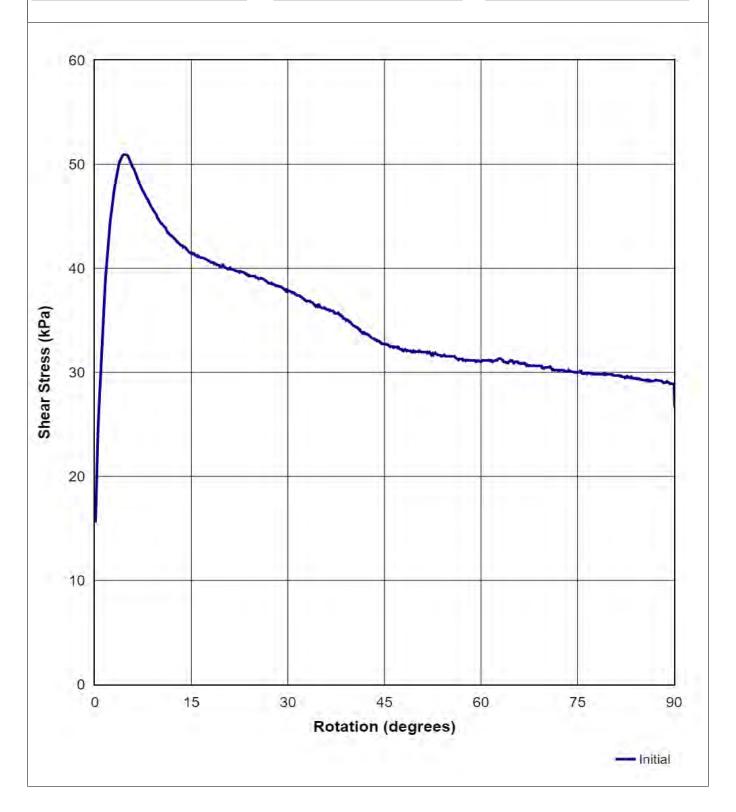


CPT-05 (10.0 m)

CLIENT	SMEC
PROJECT	Bundaberg East Levee
LOCATION	Bundaberg QLD
JOB NUMBER	G24-03-09
GPS POSITION	56 J 435334, 7250160
GPS FORMAT	WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	10.00
TEST DATE	24/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman



CPT-05 (11.0 m)

CLIENT SMEC
PROJECT Bundaberg East Levee
LOCATION Bundaberg QLD
JOB NUMBER G24-03-09
GPS POSITION 56 J 435334, 7250160
GPS FORMAT WGS84

VANE TYPE	I-VANE
VANE NUMBER	231001V
CALIBRATION DATE	19/12/2023
VANE SIZE	50 x 100
VANE CONSTANT	1.964

TEST DEPTH (m)	11.00
TEST DATE	24/04/2024
ROTATION RATE (⁰ /min)	6
TESTED BY	Sean Gibson
CHECKED BY	Mark Chapman

Appendix G Geophysics Survey

Appendix H Laboratory Test Certificates

SMEC

Level 6, 480 St Pauls Terrace Fortitude Valley, Queensland 4006

Phone: +61 7 4729 6727

Email: australia@smec.com

Redefining exceptional

Through our specialist expertise, we're challenging boundaries to deliver advanced infrastructure solutions.